
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DIGITAL NOTES

ON

DESIGN AND ANALYSIS OF ALGORITHMS

R22A0506

B. TECH II YEAR–I SEM

(R22) REGULATION

(2024-25)

Prepared by

P Honey Diana, Asst.Professor

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(Autonomous Institution–UGC, Govt.of India)
Recognized under2(f)and12(B) of UGC ACT1956

(Affiliated to JNTUH ,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-

ISO9001:2015Certified)

Maisammaguda, Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech.CSE- I Sem L/T/P/C
 3/1/-/4

(R22A0506)

DESIGN AND ANALYSIS OF ALGORITHMS

COURSE OBJECTIVES:

1. To analyze performance of algorithms.
2. To choose the appropriate data structure and algorithm design method for a specified

application.
3. To understand how the choice of data structures and algorithm design methods

impacts the performance of programs.

4. To solve problems using algorithm design methods such as the greedy method, divide and
conquer, dynamic programming, backtracking and branch and bound.

5. To understand the differences between tractable and intractable problems and to introduce P

and NP classes.

UNIT I

Introduction: Algorithms, Pseudocode for expressing algorithms, performance analysis-Space
complexity, Time Complexity, Asymptotic notation- Big oh notation, omega notation, theta
notation and little oh notation.
Divide and Conquer: General method. Applications- Binary search, Quick sort, merge sort,

Strassen’s matrix multiplication.

UNIT II

Disjoint set operations, Union and Find algorithms, AND/OR graphs, Connected components, Bi-

connected components.

Greedy method: General method, applications-Job sequencing with deadlines, Knapsack problem,

Spanning trees, Minimum cost spanning trees, Single source shortest path problem.

UNIT III

Dynamic Programming: General method, applications-Matrix chained multiplication, Optimal binary

search trees,0/1 Knapsack problem, All pairs shortest path problem, Traveling sales person problem.

UNIT IV

Backtracking: General method Applications-n-queues problem, Sum of subsets problem, Graph
coloring, Hamiltonian cycles.

UNIT V

Branch and Bound: General method, applications- Travelling sales person problem,0/I k Knapsack

problem LC branch and Bound solution, FIFO branch and bound solution.

NP-Hard and NP-Complete Problems: Basic concepts, Non deterministic algorithms, NP-Hard and
NP-Complete classes, NP-Hard problems,Cook’stheorem.

TEXTBOOKS:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and

Rajasekharan, Universities press
2. Design and Analysis of Algorithms, P.h.Dave,2ndedition,PearsonEducation.

REFERENCES:

1. Introduction to the Design And Analysis of Algorithms ALevitin Pearson Education
2. Algorithm Design foundations Analysis and Internet examples, M.T.Goodrich and R

Tomassia John Wiley and sons
3. Design and Analysis of Algorithms, S.Sridhar, Oxford Univ.Press
4. Design and Analysis of Algorithms, Aho,Ulman and Hopcraft, Pearson Education.
5. Foundations of Algorithms,R.NeapolitanandK.Naimipour,4thedition

COURSE OUTCOMES:

1. Ability to analyze the performance of algorithms.
2. Ability to choose appropriate algorithm design techniques for solving problems.

3. Ability to understand how the choice of data structures and the algorithm design methods

to impact the performance of programs.

4. Describe the dynamic programming paradigm and explain when an algorithmic design
situation calls for it. Synthesize dynamic programming algorithms and analyze them.

5. Describes NP hard and NP complete classes and also about the importance of Cook’s

theorem.

 INDEX

UNIT

TOPIC

PAGENO

I

Introduction - Algorithm definition, Algorithm Specification,
01

Performance Analysis, Space complexity
04

Time complexity
04

Divide and conquer: General method, applications
10

Binary search 11

Merge sort
15

Strassen’s matrix multiplication
18

Quick sort
20

II

Disjoint set operations, Applications
26

Union and find Algorithms
26

Spanning trees
31

AND/OR Graphs
32

Connected components and Bi-connected components
37

Greedy method- General method, Applications
43

Knapsack problem
44

Job sequencing with deadlines
45

Minimum cost spanning trees
46

Single source shortest path problem.
57

III

Dynamic Programming- General Method, Applications
58

All pairs shortest path problem
59

Traveling sales person problem
62

 INDEX

0/1 knapsack problem

64

Reliability design

66

Optimal binary search trees
73

Chained matrix Multiplication

77

IV

Backtracking - General method
80

The 8-queen problem
81

Sum of subsets problem
87

Graph coloring
89

Hamiltonian cycles
90

V

Branch and Bound: General Method, Least Cost (LC) search
91

FIFO branch and Bound solution
94

Travelling sales person problem
95

0/1 Knapsack problem- LC branch and Bound solution
106

NP-Hard and NP-Complete problems: non
deterministic algorithms

111

NP-Hard and NP Complete classes
115

Cook’s theorem
117

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 1

Algorithm:
An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be

performed with a finite amount of effort in a finite length of time. No matter what the input values may
be, an algorithm terminates after executing a finite number of instructions. In addition every algorithm

must satisfy the following criteria:

 Input: there are zero or more quantities, which are externally supplied;

 Output: at least one quantity is produced

 Definiteness: each instruction must be clear and unambiguous;

 Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

 Effectiveness: every instruction must be sufficiently basic that it can in principle be carried out by a

person using only pencil and paper. It is not enough that each operation be definite, but it must also

be feasible.

In formal computer science, one distinguishes between an algorithm, and a program. A program does not
necessarily satisfy the fourth condition. One important example of such a program for a computer is its
operating system, which never terminates (except for system crashes) but continues in a wait loop until
more jobs areentered.

We represent algorithm using a pseudo language that is a combination of the constructs of a

programming language together with informal English statements.

Psuedo code for expressing algorithms:

Algorithm Specification: Algorithm can be described in three ways.

1. Natural language like English: When this way is choused care should be taken, we should

ensure that each & every statement is definite.

2. Graphic representation called flowchart: This method will work well when the algorithm

is small& simple.

3. Pseudo-code Method: In this method, we should typically describe algorithms as program,

which resembles language like Pascal & algol.

Pseudo-Code Conventions:

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces {and}.

3. An identifier begins with a letter. The data types of variables are not explicitly declared.

UNIT I:

Introduction- Algorithm definition, Algorithm Specification, Performance Analysis- Space
complexity, Time complexity, Randomized Algorithms.
Divide and conquer- General method, applications - Binary search, Merge sort, Quick sort,

Strassen’s Matrix Multiplication.

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 2

4. Compound data types can be formed with records. Here is an example,

Node. Record

{
data type – 1 data-1;

.

.

.

data type – n data – n;

node * link;

}

Here link is a pointer to the record type node. Individual data items of a record can

be accessed with and period.

5. Assignment of values to variables is done using the assignment statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

 Logical Operators AND, OR, NOT

Relational Operators <, <=,>,>=, =, !=

7. The following looping statements are employed.

For, while and repeat-until

While Loop:

While < condition > do

{
<statement-1>

.

.

.

<statement-n>

}

For Loop:

For variable: = value-1 to value-2 step step do

{

<statement-1>

.

.

.

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 3

<statement-n>

}

repeat-until:

repeat

<statement-1>

.

.

.

<statement-n>

until<condition>

8. A conditional statement has the following forms.

 If <condition> then <statement>

 If <condition> then <statement-1>

Else <statement-1>

Case statement:

Case

{

}

: <condition-1> : <statement-1>

.

.

.

: <condition-n> : <statement-n>

: else : <statement-n+1>

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 4

9. Input and output are done using the instructions read & write.

10. There is only one type of procedure:

Algorithm, the heading takes the form,

Algorithm <Name> (<Parameter lists>)

 As an example, the following algorithm fields & returns the maximum of ‘n’ given

numbers:

1. Algorithm Max(A,n)

2. // A is an array of size n

3. {

4. Result := A[1];

5. for I:= 2 to n do

6. if A[I] > Result then

7. Result :=A[I];

8. return Result;

9. }

In this algorithm (named Max), A & n are procedure parameters. Result & I are Local

variables.

Algorithm:

1. Algorithm selection sort (a,n)

2. // Sort the array a[1:n] into non-decreasing
order. 3.{

4. for I:=1 to n do

5. {

6. j:=I;

7. for k:=i+1 to n do
8. if (a[k]<a[j])

9. t:=a[I];

10. a[I]:=a[j];

11. a[j]:=t;

12. }

13. }

Performance Analysis:
The performance of a program is the amount of computer memory and time needed to run a program.

We use two approaches to determine the performance of a program. One is analytical, and the other
experimental. In performance analysis we use analytical methods, while in performance measurement we

conduct experiments.

Time Complexity:
The time needed by an algorithm expressed as a function of the size of a problem is called the time

complexity of the algorithm. The time complexity of a program is the amount of computer time it needs to

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 5

run to completion.
The limiting behavior of the complexity as size increases is called the asymptotic time complexity. It is

 the asymptotic complexity of an algorithm, which ultimately determines the size of problems that can be

solved by the algorithm.

The Running time of a program

When solving a problem we are faced with a choice among algorithms. The basis for this

can be any one of the following:

i. We would like an algorithm that is easy to understand code anddebug.
ii. We would like an algorithm that makes efficient use of the computer’s

resources, especially, one that runs as fast as possible.

Measuring the running time of a program

The running time of a program depends on factors such as:
1. The input to the program.
2. The quality of code generated by the compiler used to create the object

program.

3. The nature and speed of the instructions on the machine used to execute the

program,

4. The time complexity of the algorithm underlying theprogram.

Statement S/e Frequency Total

1. Algorithm Sum(a,n) 0 - 0
2.{ 0 - 0

3. S=0.0; 1 1 1

4. for I=1 to n do 1 n+1 n+1

5. s=s+a[I]; 1 n n

6. return s; 1 1 1

7. } 0 - 0

The total time will be 2n+3

Space Complexity:
The space complexity of a program is the amount of memory it needs to run tocompletion. The space

need by a program has the following components: Instruction space: Instruction space is the space needed

to store the compiled version of the program instructions.

Data space: Data space is the space needed to store all constant and variable values. Data space has two
components:

 Space needed by constants and simple variables in program.

 Space needed by dynamically allocated objects such as arrays and classinstances.

Environment stack space: The environment stack is used to save informationneeded to resume execution
of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends onfactors such as:

 The compiler used to complete the program into machine code.

 The compiler options in effect at the time of compilation

 The target computer.

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 6

The space requirement s(p) of any algorithm p may therefore be written as,

S(P) = c+ Sp(Instance characteristics)

Where ‘c’ is a constant.

Example 2:

Algorithm sum(a,n)

{

s=0.0;
for I=1 to n do

s= s+a[I];
return s;

}

 The problem instances for this algorithm are characterized by n,the number of
elements to be summed. The space needed d by ‘n’ is one word, since it is of type

integer.

 The space needed by ‘a’a is the space needed by variables of tyepe array of floating
point numbers.

 This is atleast ‘n’ words, since ‘a’ must be large enough to hold the ‘n’ elements to be

summed.

 So,we obtain Ssum(n)>=(n+s)
[n for a[],one each for n,I a& s]

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space

requirement of the algorithm in terms of the size ‘n’ of the inputdata. Mostly, the storage space required

by an algorithm is simply a multiple of the data size ‘n’. Complexity shall refer to the running time of the

algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size ‘n’ of the

input data but also on the particular data. The complexity function f(n) for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

Asymptotic Notations:

The following notations are commonly use notations in performance analysis and

used to characterize the complexity of an algorithm:

1. Big–OH (O)

2. Big–OMEGA (Ω),

3. Big–THETA (Θ) and

4. Little–OH (o)

Big–OH O (Upper Bound)

f(n) = O(g(n)), (pronounced order of or big oh), says that the growth rate of f(n) is less
than or equal (<) that of g(n).

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 7

Big–OMEGA Ω (Lower Bound)

f(n) = Ω (g(n)) (pronounced omega), says that the growth rate of f(n) is greater than or
equal to (>) that of g(n).

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 8

Big–THETA Θ (Same order)
f(n) = Θ (g(n)) (pronounced theta), says that the growth rate of f(n) equals (=) the
growth rate of g(n) [if f(n) = O(g(n)) and T(n) = Θ (g(n)].

little-o notation

Definition: A theoretical measure of the execution of an algorithm, usually the time or memory needed,

given the problem size n, which is usually the number of items. Informally, saying some equation f(n) =

o(g(n)) means f(n) becomes insignificant relative to g(n) as n approaches infinity. The notation is read,
"fof n is little oh of g of n".

Formal Definition: f(n) = o(g(n)) means for all c > 0 there exists some k > 0 such that 0 ≤ f(n) < cg(n)

forall n ≥ k. The value of k must not depend on n, but may depend on c.

Different time complexities

Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data. Clearlythe complexity

f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want to examine. This is

usually done by comparing f(n) with some standard functions. The most common computing times
are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Classification of Algorithms

If ‘n’ is the number of data items to be processed or degree of polynomial or the size of
the file to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a fewtimes. If all
the instructions of a program have this property, we say that its running time is a

constant.

Log n When the running time of a program is logarithmic, the program getsslightly slower

as n grows. This running time commonly occurs in programs that solve a big problem by

transforming it into a smaller problem, cutting the size by some constant fraction., When
n is a million, log n is a doubled. Whenever n doubles, log n increases by a constant, but

log n does not double until n increases to n2.

n When the running time of a program is linear, it is generally the case that a

https://xlinux.nist.gov/dads/HTML/algorithm.html

Design and Analysis of Algorithms AY: 2024-25

DEPT of CSE 9

small amount of processing is done on each input element. This is theoptimal

situation for an algorithm that must process n inputs.

n log n This running time arises for algorithms that solve a problem by breaking itup into smaller

sub-problems, solving then independently, and then combining the solutions. When n
doubles, the running time more than doubles.

n
2
 When the running time of an algorithm is quadratic, it is practical for use only on

relatively small problems. Quadratic running times typically arise in algorithms that

process all pairs of data items (perhaps in a double nested loop) whenever n doubles, the
running time increases fourfold.

n
3
 Similarly, an algorithm that process triples of data items (perhaps in a triple–nested loop)

has a cubic running time and is practical for use only on small problems. Whenever n

doubles, the running time increases eight fold.

2
n
 Few algorithms with exponential running time are likely to be appropriate for practical

use, such algorithms arise naturally as “brute–force” solutions to problems. Whenever n

doubles, the running timesquares.

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

n log2 n n*log2n n2 n3 2n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4,294,967,296

64 6 384 4096 2,62,144 Note 1

128 7 896 16,384 2,097,152 Note 2

256 8 2048 65,536 1,677,216 ????????

Note1: The value here is approximately the number of machine instructions
executed by a 1 gigaflop computer in 5000 years.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 10

Divide and Conquer

General Method:

Divide and conquer is a design strategy which is well known to breaking down
efficiency barriers. When the method applies, it often leads to a large improvement in
time complexity. For example, from O (n2) to O (n log n) to sort the elements.

Divide and conquer strategy is as follows: divide the problem instance into two or
more smaller instances of the same problem, solve the smaller instances recursively,
and assemble the solutions to form a solution of the original instance. The recursion
stops when an instance is reached which is too small to divide. When dividing the
instance, one can either use whatever division comes most easily to hand or invest
time in making the division carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:

Divide : Divide the problem into a number of sub problems. The sub problems

are solved recursively.
Conquer : The solution to the original problem is then formed from the solutions

to the sub problems (patching together the answers).

Traditionally, routines in which the text contains at least two recursive calls are called
divide and conquer algorithms, while routines whose text contains only one recursive
call are not. Divide–and–conquer is a very powerful use of recursion.

Control Abstraction of Divide and Conquer

A control abstraction is a procedure whose flow of control is clear but whose

primary operations are specified by other procedures whose precise meanings are left

undefined. The control abstraction for divide and conquer technique is DANDC(P),

where P is the problem to be solved.

DANDC (P)

{

if SMALL (P) then return S (p);
else
{

divide p into smaller instances p1, p2, …. Pk, k 1;
apply DANDC to each of these sub problems;
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));

}

}

SMALL (P) is a Boolean valued function which determines whether the input size is
small enough so that the answer can be computed without splitting. If this is so
function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These

sub problems p1, p2, . . . , pk are solved by recursive application of DANDC.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 11

If the sizes of the two sub problems are approximately equal then the computing
time of DANDC is:

T (n) =

 g (n)

2 T(n/2) f (n)

n small

otherwise

Where, T (n) is the time for DANDC on ‘n’ inputs
g (n) is the time to complete the answer directly for small inputs and
f (n) is the time for Divide and Combine

Binary Search:

If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn .

When we are given a element ‘x’, binary search is used to find the corresponding

element from the list. In case ‘x’ is present, we have to determine a value ‘j’ such

that a[j] = x (successful search). If ‘x’ is not in the list then j is to set to zero (un

successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and

compare ‘x’ with a[mid]. If x = a[mid] then the desired record has been found.

If x < a[mid] then ‘x’ must be in that portion of the file that precedes a[mid], if there

at all. Similarly, if a[mid] > x, then further search is only necessary in that past of

the file which follows a[mid]. If we use recursive procedure of finding the middle key

a[mid] of the un-searched portion of a file, then every un-successful comparison of

‘x’ with a[mid] will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between ‘x’ and

a[mid], and since an array of length ‘n’ can be halved only about log2n times before

reaching a trivial length, the worst case complexity of Binary search is about log2n

low and high are integer variables such that each time through the loop either ‘x’

is found or low is increased by at least one or high is decreased by at least one. Thus

we have two sequences of integers approaching each other and eventually low will

become greater than high causing termination in a finite number of steps if ‘x’ is not

present.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 12

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 13

Example for Binary Search

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

The number of comparisons required for searching different elements is as follows:

1. Searching for x = 101

Number of comparisons = 4

2. Searching for x = 82

Number of comparisons = 3

3. Searching for x = 42

Number of comparisons = 4

4. Searching for x = -14

Number of comparisons = 3

found

low
1

high
9

mid
5

6 9 7

8 9 8
found

low
1

high
9

mid
5

6 9 7
6 6 6

7 6 not found

low
1

high
9

mid
5

1 4 2
1 1 1

2 1 not found

Continuing in this manner the number of element comparisons needed to find each of

nine elements is:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the
comparisons needed to find all nine items and dividing by 9, yielding 25/9 or
approximately 2.77 comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending
upon the value of x.

low
1

high
9

mid
5

6 9 7
8 9 8
9 9 9

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 14

If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or

a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that ‘x’
is not present. For all of the remaining possibilities BINSRCH requires 4 element
comparisons. Thus the average number of element comparisons for an unsuccessful

search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

The time complexity for a successful search is O(log n) and for an unsuccessful
search is Θ(log n).

Successful searches un-successful searches
Θ(1), Θ(log n), Θ(log n) Θ(log n)

Best average worst best, average and worst

Analysis for worst case

Let T (n) be the time complexity of Binary search

The algorithm sets mid to [n+1 / 2]

Therefore,
T(0) = 0

T(n) = 1 if x = a [mid]

= 1 + T([(n + 1) / 2] – 1) if x < a [mid]

 = 1 + T(n – [(n + 1)/2]) if x > a [mid]

Let us restrict ‘n’ to values of the form n = 2K – 1, where ‘k’ is a non-negative
integer. The array always breaks symmetrically into two equal pieces plus middle
element.

2K – 1 - 1
2K – 1 - 1

 2K 1

Algebraically this is
 n 1

 2
K 1 1 = 2K – 1 for K > 1

 2 2

Giving,

T(0) = 0

T(2k – 1) = 1 if x = a [mid]

 =

=

1 + T(2K - 1

1 + T(2k - 1

– 1)

– 1)

if x < a [mid]

if x > a [mid]

In the worst case the test x = a[mid] always fails, so

w(0) = 0

w(2k – 1) = 1 + w(2k - 1 – 1)

This is now solved by repeated substitution:

w(2k – 1) = 1 + w(2k - 1 – 1)

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 15

= 1 + [1 + w(2k - 2 –1)]

= 1 + [1 + [1 + w(2k - 3 –1)]]

=

=

= i + w(2k - i – 1)

For i < k, letting i = k gives w(2k –1) = K + w(0) = k

But as 2K – 1 = n, so K = log2(n + 1), so

w(n) = log2(n + 1) = O(log n)

for n = 2K–1, concludes this analysis of binary search.

Although it might seem that the restriction of values of ‘n’ of the form 2K–1 weakens
the result. In practice this does not matter very much, w(n) is a monotonic
increasing function of ‘n’, and hence the formula given is a good approximation even
when ‘n’ is not of the form 2K–1.

Merge Sort:

Merge sort algorithm is a classic example of divide and conquer. To sort an array,
recursively, sort its left and right halves separately and then merge them. The time
complexity of merge mort in the best case, worst case and average case is O(n log n)
and the number of comparisons used is nearly optimal.

This strategy is so simple, and so efficient but the problem here is that there seems
to be no easy way to merge two adjacent sorted arrays together in place (The result
must be build up in a separate array).

The fundamental operation in this algorithm is merging two sorted lists. Because the
lists are sorted, this can be done in one pass through the input, if the output is put in
a third list.

Algorithm

Algorithm MERGESORT (low, high)
// a (low : high) is a global array to be sorted.
{

if (low < high)
{

mid := (low + high)/2 //finds where to split the set
MERGESORT(low, mid); //sort one subset
MERGESORT(mid+1, high); //sort the other subset
MERGE(low, mid, high); // combine the results

}

}

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 16

Algorithm MERGE (low, mid, high)

// a (low : high) is a global array containing two sorted subsets
// in a (low : mid) and in a (mid + 1 : high).
// The objective is to merge these sorted sets into single sorted

// set residing in a (low : high). An auxiliary array B is used.
{

h :=low; i := low; j:= mid + 1;
while ((h < mid) and (J < high)) do
{

if (a[h] < a[j]) then
{

}
else
{

}

b[i] := a[h]; h := h + 1;

b[i] :=a[j]; j := j + 1;

i := i + 1;
}
if (h > mid) then

for k := j to high do
{

b[i] := a[k]; i := i + 1;
}

else
for k := h to mid do
{

b[i] := a[K]; i := i + l;
}

for k := low to high do

a[k] := b[k];

}

Example

For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate

merge sort algorithm:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 17

1, 4, 8

1, 4 5, 8

Tree Calls of MERGESORT(1, 8)

The following figure represents the sequence of recursive calls that are produced by
MERGESORT when it is applied to 8 elements. The values in each node are the values
of the parameters low and high.

Tree Calls of MERGE()

The tree representation of the calls to procedure MERGE by MERGESORT is as
follows:

Analysis of Merge Sort

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so
we solve for the case n = 2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1.

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two
recursive merge sorts of size n/2, plus the time to merge, which is linear. The
equation says this exactly:

T(1) = 1
T(n) = 2 T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will
solve by substituting recurrence relation continually on the right–hand side.

We have, T(n) = 2T(n/2) + n

1, 2, 4

3, 3, 4 1, 1, 2

1, 8

2, 2 1, 1

1, 2

4, 4 3, 3

3, 4

6, 6 5, 5

5, 6

8, 8 7, 7

7, 8

5, 6, 8

7, 7, 8 5, 5, 6

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 18

T k

Since we can substitute n/2 into this main equation

2 T(n/2)

We have,

=

=

2 (2 (T(n/4)) + n/2)

4 T(n/4) + n

T(n/2) = 2 T(n/4) + n
T(n) = 4 T(n/4) + 2n

Again, by substituting n/4 into the main equation, we see that

4T (n/4) =
=

4 (2T(n/8)) + n/4
8 T(n/8) + n

So we have,

T(n/4) = 2 T(n/8) + n
T(n) = 8 T(n/8) + 3n

Continuing in this manner, we obtain:

T(n) = 2k T(n/2k) + K. n

As n = 2k, K = log2n, substituting this in the above equation

T (n) 2log2n 2
k

2

log2 n . n

= n T(1) + n log n

= n log n + n

Representing this in O notation:

T(n) = O(n log n)

We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’
is not a power of 2. The answer turns out to be almost identical.

Although merge sort’s running time is O(n log n), it is hardly ever used for main
memory sorts. The main problem is that merging two sorted lists requires linear
extra memory and the additional work spent copying to the temporary array and
back, throughout the algorithm, has the effect of slowing down the sort considerably.
The Best and worst case time complexity of Merge sort is O(n log n).

Strassen’s Matrix Multiplication:

The matrix multiplication of algorithm due to Strassens is the most dramatic example
of divide and conquer technique (1969).

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C’ as
follows :

for i := 1 to n do

for j :=1 to n do
c[i, j] := 0;

for K: = 1 to n do

c[i, j] := c[i, j] + a[i, k] * b[k, j];

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 19

This algorithm requires n3 scalar multiplication’s (i.e. multiplication ofsingle
numbers) and n3 scalar additions. So we naturally cannot improve upon.

We apply divide and conquer to this problem. For example let us considers three
multiplication like this:

A 11 A 12 B 11 B 12
C 11 C 12

A A B B

C C

 21 22 21 22 21 22

Then cij can be found by the usual matrix multiplication algorithm,

C11 = A11 . B11 + A12 . B21

C12 = A11 . B12 + A12 . B22

C21 = A21 . B11 + A22 . B21

C22 = A21 . B12 + A22 . B22

This leads to a divide–and–conquer algorithm, which performs nxn matrix
multiplication by partitioning the matrices into quarters and performing eight
(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions.

T(1) = 1
T(n) = 8 T(n/2)

Which leads to T (n) = O (n3), where n is the power of 2.

Strassens insight was to find an alternative method for calculating the Cij, requiring
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix
additions and subtractions:

P = (A11 + A22) (B11 + B22)

Q = (A21 + A22) B11

R = A11 (B12 – B22)

S = A22 (B21 - B11)

T = (A11 + A12) B22

U = (A21 – A11) (B11 + B12)

V = (A12 – A22) (B21 + B22)

C11 = P + S – T + V

C12 = R + T

C21 = Q + S

C22 = P + R - Q + U.

This method is used recursively to perform the seven (n/2) x (n/2) matrix
multiplications, then the recurrence equation for the number of scalar multiplications
performed is:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 20

2

2

T(1) = 1
T(n) = 7 T(n/2)

Solving this for the case of n = 2k is easy:

T(2k) =

=

7 T(2k–1)

72 T(2k-2)

=

=

- - - - - -

- - - - - -

= 7i T(2k–i)

Put i = k

= 7k T(1)

= 7k

That is, T(n) = 7 log n

= n log 7

= O(n log
2
7) = O(2n.81)

So, concluding that Strassen’s algorithm is asymptotically more efficient than the
standard algorithm. In practice, the overhead of managing the many small matrices
does not pay off until ‘n’ revolves the hundreds.

Quick Sort

The main reason for the slowness of Algorithms like SIS is that all comparisons and
exchanges between keys in a sequence w1, w2, , wn take place between
adjacent pairs. In this way it takes a relatively long time for a key that is badly out of
place to work its way into its proper position in the sorted sequence.

Hoare his devised a very efficient way of implementing this idea in the early 1960’s
that improves the O(n2) behavior of SIS algorithm with an expected performance that
is O(n log n).

In essence, the quick sort algorithm partitions the original array by rearranging it
into two groups. The first group contains those elements less than some arbitrary
chosen value taken from the set, and the second group contains those elements
greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged
in this way with respect to the pivot, the very same partitioning is recursively applied
to each of the two subsets. When all the subsets have been partitioned and
rearranged, the original array is sorted.

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward
each other in the following fashion:

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot.

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 21

 If j > i, interchange a[j] with a[i]

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot
element in ‘j’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort
function sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’.

 It terminates when the condition low >= high is satisfied. This condition

will be satisfied only when the array is completely sorted.

 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it
calls the partition function to find the proper position j of the element
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1],
. . . x[j-1] and x[j+1], x[j+2], x[high].

 It calls itself recursively to sort the left sub-array x[low], x[low+1],

. . x[j-1] between positions low and j-1 (where j is returned by the
partition function).

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2],
. . . x[high] between positions j+1 and high.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 22

Example

Select first element as the pivot element. Move ‘i’ pointer from left to right in search
of an element larger than pivot. Move the ‘j’ pointer from right to left in search of an
element smaller than pivot. If such elements are found, the elements are swapped.
This process continues till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’

pointer, the position for pivot is found and interchange pivot and element at ‘j’
position.

Let us consider the following example with 13 elements to analyze quick sort:

1

2

3

4

5

6

7

8

9

10

11

12

13

Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot i j swap i & j

 04 79

 i j swap i & j

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 23

 02 57

 j i

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap pivot

& j

pivot

j, i
 swap pivot

& j

(02 08 16 06 04) 24

pivot,
j

i
 swap pivot

& j

02 (08 16 06 04)

 pivot i j swap i & j

 04 16

 j i

(06 04) 08 (16)

 swap pivot
& j

 pivot,
j

i

(04) 06

 swap pivot
& j

 04
 pivot,

j, i

 16
 pivot,

j, i

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

 pivot i j swap i & j

 45 57

 j i

(45) 56 (58 79 70 57)

swap pivot
& j

 45
 pivot,

j, i

swap pivot

& j

 (58
pivot

79
i 70

57)
j swap i & j

 57 79

 j i

(57) 58 (70 79)

swap pivot
& j

 57
 pivot,

j, i

 (70 79)

 pivot,
j

i
swap pivot

& j
 70

 79
pivot,

j, i

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 24

Analysis of Quick Sort:

Like merge sort, quick sort is recursive, and hence its analysis requires solving a
recurrence formula. We will do the analysis for a quick sort, assuming a random pivot

(and no cut off for small files).

We will take T (0) = T (1) = 1, as in merge sort.

The running time of quick sort is equal to the running time of the two recursive calls
plus the linear time spent in the partition (The pivot selection takes only constant
time). This gives the basic quick sort relation:

T (n) = T (i) + T (n – i – 1) + C n - (1)

Where, i = |S1| is the number of elements in S1.

Worst Case Analysis

The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1,
which is insignificant, the recurrence is:

T (n) = T (n – 1) + C n n > 1 - (2)

Using equation – (1) repeatedly, thus

T (n – 1) = T (n – 2) + C (n – 1)

T (n – 2) = T (n – 3) + C (n – 2)

- - - - - - - -

T (2) = T (1) + C (2)

Adding up all these equations yields

T (n) T (1)

n

i
i 2

= O (n2) - (3)

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 25

Best and Average Case Analysis

The number of comparisons for first call on partition: Assume left_to_right moves
over k smaller element and thus k comparisons. So when right_to_left crosses
left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1
comparisons. The average case complexity of quicksort is

T(n) = comparisons for first call on quicksort
+

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +

----- + T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) +------ + T(n-2)] \

Subtracting both sides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1)

nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1)

T(n) = 2 + (n+1)T(n-1)/n

The recurrence relation obtained is:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

Using the method of subsititution:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

T(n-1)/n = 2/n + T(n-2)/(n-1)

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 + T(2)/3

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0)

Adding both sides:

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + --------------+ T(2)/3 + T(1)/2]

= [T(n-1)/n + T(n-2)/(n-1) + -------------- + T(2)/3 + T(1)/2] + T(0) +

[2/(n+1) + 2/n + 2/(n-1) + ----------- +2/4 + 2/3]

Cancelling the common terms:

T(n)/(n+1) = 2[1/2 +1/3 +1/4+ --------------- +1/n+1/(n+1)]

T(n) = (n+1)2[2k n 1
1/ k

=2(n+1) []

=2(n+1)[log (n+1) – log 2]
=2n log (n+1) + log (n+1)-2n log 2 –log 2

T(n)= O(n log n)

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 26

Sets and Disjoint Set Union:
Disjoint Set Union: Considering a set S={1,2,3…10} (when n=10), then elements

can be partitioned into three disjoint sets s1={1,7,8,9},s2={2,5,10} and

s3={3,4,6}. Possible tree representations are:

In this representation each set is represented as a tree. Nodes are linked from the child

toparent rather than usual method of linking from parent to child.

The operations on these sets are:

1. Disjoint set union

2. Find(i)

3. Min Operation

4. Delete

5. Intersect

1. Disjoint Set union:
If Si and Sj are two disjoint sets, then their union Si U Sj = all the elements

X such that x is in Si or Sj. Thus S1 U S2 ={1,7,8,9,2,5,10}.

2. Find(i):
Given the element I, find the set containing i. Thus, 4 is in set S3, 9 is in S1.

UNION operation:
Union(i,j) requires two tree with roots i and j be joined. S1 U S2 isobtained by

making any one of the sets as sub tree of other.

UNIT II:

Disjoint set operations, union and find algorithms, AND/OR graphs, Connected Components and
Spanning trees, Bi-connected components.
Greedy method: General method, applications- Job sequencing with deadlines, Knapsack problem,

Spanning trees, Minimum cost spanning trees, Single source shortest path problem.

1

7 8 9

5

2 10

3

4 6

1

7 8 9 5

2 1

5

1
2 1

7 8 9

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 27

Simple Algorithm for Union:

Algorithm Union(i,j)

{

//replace the disjoint sets with roots i and j, I not equal to j by theirunion Integer

i,j;

P[j] :=i;

}

Example:

Implement following sequence of operations Union(1,3),Union(2,5),Union(1,2)

Solution:
Initially parent array contains zeros.

0 0 0 0 0 0
1 2 3 4 5 6

1. After performing union(1,3)operation Parent[3]:=1

0 0 1 0 0 0
1 2 3 4 5 6

2. After performing union(2,5)operation Parent[5]:=2

0 0 1 0 2 0
1 2 3 4 5 6

3. After performing union(1,2)operation Parent[2]:=1

0 1 1 0 2 0
1 2 3 4 5 6

1

3 2

5

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 28

Process the following sequence of union operations Union(1,2),Union(2,3) Union(n-1,n)

Degenerate Tree:

The time taken for n-1 unions is O(n).

Find(i) operation: determines the root of the tree containing

element i. Simple Algorithm for Find:

Algorithm Find(i)

{

j:=i;

while(p[j]>0) do

j:=p[j]; return j;

}

Find Operation: Find(i) implies that it finds the root node of ith node, in other words it

returns the name of the set i.

Example: Consider the Union(1,3)

Find(1)=0

Find(3)=1, since its parent is 1. (i.e, root is 1)

n

n-1

1

1

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 29

Example:
Considering

1

3 2

5
Array Representation

P[i] 0 1 1 2
i 1 2 3 5

Find(5)=1

Find(2)=1

Find(3)=1

The root node represents all the nodes in the tree. Time Complexity of ‘n’ find operations is

O(n2).

To improve the performance of union and find algorithms by avoiding the creation of

degenerate tree. To accomplish this, we use weighting rule for Union(i,j).

Weighting Rule for Union(i,j)

Tree obtained with weighted Initially

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 30

Union(1,2)

Union(1,3)

:
:

:

Union(1,n)

Collapsing Rule for Find(i)

1 2 n

1 4

2 3

n

1

2

3 n

1

2 3 n

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 31

Spanning Trees:

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible

number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected..

By this definition, we can draw a conclusion that every connected and undirected Graph G has at

least one spanning tree. A disconnected graph does not have any spanning tree, as it cannot be

spanned to all its vertices.

We found three spanning trees off one complete graph. A complete undirected graph can have

maximum nn-2 number of spanning trees, where n is the number of nodes. In the above addressed

example, n is 3, hence 33−2 = 3spanning trees are possible.

General Propertiesof Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a few

properties of the spanning tree connected to graph G −

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree

is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree is maximally

acyclic.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 32

Mathematical Propertiesof Spanning Tree

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning tree.

 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected

graphs do not have spanning tree.

Applicationof SpanningTree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. Common

application of spanning trees are −

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

AND/OR GRAPH:

And/or graph is a specialization of hypergraph which connects nodes by sets of arcs rather than

by a single arcs. A hypergraph is defined as follows:

A hypergraph consists of: N, a set of nodes,

H, a set of hyperarcs defined by ordered pairs, in which the first implement of the pair is a node of

N and the second implement is the subset of N.

An ordinary graph is a special case of hypergraph in which all the sets of decendent nodes have a

cardinality of 1.

Hyperarcs also known as K-connectors, where K is the cardinality of the set of decendent nodes.

If K = 1, the descendent may be thought of as an OR nodes. If K > 1, the elements of the set of

decendents may be thought of as AND nodes. In this case the connector is drawn with individual

edges from the parent node to each of the decendent nodes; these individual edges are then joined

with a curved link. And/or graph for the expression P and Q -> R is follows:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 33

The K-connector is represented as a fan of arrows with a single tie is shown above. The and/or

graphs consists of nodes labelled by global databases. Nodes labelled by compound databases have

sets of successor nodes. These successor nodes are called AND nodes, in order to process the

compound database to termination, all the compound databases must be processed to termination.

For example consider, consider a boy who collects stamps (M). He has for the purpose of exchange

a winning conker (C), a bat (B) and a small toy animal (A). In his class there are friends who are

also keen collectors of different items and will make the following exchanges.

1. 1 winning conker (C) for a comic (D) and a bag of sweets (S).

2. 1 winning conker (C) for a bat (B) and a stamp (M).

3. 1 bat (B) for two stamps (M, M).

4. 1 small toy animal (A) for two bats (B, B) and a stamp (M).

The problem is how to carry out the exchanges so that all his exchangable items are converted into

stamps (M). This task can be expressed more briefly as:

1. Initial state = (C, B, A)

2. Transformation rules:

a. If C then (D, S)

b. If C then (B, M)

c. If B then (M, M)

d. If A then (B, B, M)

3. The goal state is to left with only stamps (M, , M)

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 34

The figure shows that, a lot of extra work is done by redoing many of the transformations.This

repetition can be avoided by decomposing the problem into subproblems. There are two major

ways to order the components:

1. The components can either be arranged in some fixed order at the time they are

generated (or).

2. They can be dynamically reordered during processing.

The more flexible system is to reorder dynamically as the processing unfolds. It can be

represented by and/or graph. The solution to the exchange problem will be:

Swap conker for a bat and a stamp, then exchange this bat for two stamps. Swap hisown

bat for two more stamps, and finally swap the small toy animal for two bats and a stamp. The

two bats can be exchanged for two stamps.

The previous exchange problem, when implemented as an and/or graph looks as follows:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 35

Example 1:

Draw an AND/OR graph for the following prepositions:

1. A

2. B

3. C

4. A ^ B -> D

5. A ^ C -> E

6. B ^ D -> F

7. F -> G

8. A ^ E -> H

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 37

Connected components

In graph theory, a connected component (or just component) of an undirected graph is

a subgraph in which any two vertices are connected to each other by paths, and which is

connected to no additional vertices in the super graph. For example, the graph shown in the

illustration has three connected components. A vertex with no incident edges is itself a connected

component. A graph that is itself connected has exactly one connected component, consisting of

the whole graph.

A graph with three connected components.

Biconnected Components:

Let G = (V, E) be a connected undirected graph. Consider the following definitions:

Articulation Point (or Cut Vertex): An articulation point in a connected graph is a
vertex (together with the removal of any incident edges) that, if deleted, would break the
graph into two or more pieces..

Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph is biconnected if it contains no articulation points. In a
biconnected graph, two distinct paths connect each pair of vertices. A graph that is not
biconnected divides into biconnected components. This is illustrated in the following
figure:

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Subgraph_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#supergraph

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 38

Articulation Points and Bridges

Biconnected graphs and articulation points are of great interest in thedesign of

network algorithms,
because these are the “critical" points, whose failure will result in thenetwork

becoming disconnected.

Let us consider the typical case of vertex v, where v is not a leaf and v is not the root.
Let w1, w2, wk be the children of v. For each child there is a subtree of the DFS
tree rooted at this child. If for some child, there is no back edge going to a proper ancestor
of v, then if we remove v, this subtree becomes disconnected from the rest of the graph,
and hence vis an articulation point.

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN

(w) (u, w) is a back edge}}.

L (u) is the lowest depth first number that can be reached from ‘u’ using a path of
descendents followed by at most one back edge. It follows that, If ‘u’ is not the root then
‘u’ is an articulation point iff ‘u’ has a child ‘w’ such that:

L (w) ≥ DFN (u)

Algorithm for finding the Articulation points:

Pseudocode to compute DFN and L.

Algorithm Art (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first

// spanning tree. It is assumed that the global array dfn is initialized to zero and that
// the global variable num is initialized to 1. n is the number of vertices in G.
{

dfn [u]: = num; L [u]: = num;
num: = num + 1; for each vertex wadjacent from u do
{

if (dfn [w] = 0) then
{

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 39

8 6

1 1 5 7

 6 2

3 3 8 1 0

1 0 9 5

Art (w, u); // w is unvisited.

L [u] := min (L [u], L[w]);
}

else if (w v) then L [u] := min (L [u], dfn [w]);
}

}

Algorithm for finding the Biconnected Components:

Algorithm BiComp (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first

// spanning tree. It is assumed that the global array dfn is initially zero and that the
// global variable num is initialized to 1. n is the number of vertices in G.
{

dfn [u] := num; L [u] := num; num
:= num + 1; for each vertex w
adjacent from u do
{

if ((v w) and (dfn [w] < dfn
[u])) then add (u, w)
to the top of a stack
s;

if (dfn [w] = 0) then
{

if (L [w] > dfn [u]) then
{

write (“New
bicomponent”);
repeat
{

Delete an edge from the
top of stack s; Let this
edge be (x, y);

Write (x, y);
} until (((x, y) = (u, w)) or ((x, y) = (w, u)));

}
BiComp (w, u); // w is unvisited. L [u] := min (L [u], L [w]);

}

else if (w v) then L [u] : = min (L [u], dfn [w]);
}

}

Example:

For the following graph identify the articulation points and Biconnected components:

2 9

4

1 1

2 4

3 3

1 0 5 9 6 2

7 5

8 6 7 9

8 1 0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 40

4 Graph Dept h First Spanning Tree

To identify the articulation points, we use:

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w
is a vertex to which there is back edge from u}}

L (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1

L (4) = min {DFN (4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1

L (3) = min {DFN (3), min {L (10), L (9), L (2)}} =
= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1

L (10) = min {DFN (10)} = 4

L (9) = min {DFN (9)} = 5

L (2) = min {DFN (2), min {L (5)}, min {DFN (1)}}
= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1

L (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6

L (6) = min {DFN (6)} = 8

L (7) = min {DFN (7), min {L (8}, min {DFN (2)}}
= min {9, L (8) , 6} = min {9, 6, 6} = 6

L (8) = min {DFN (8), min {DFN (5), DFN (2)}}

 = min {10, min (7, 6)} = min {10, 6} = 6

Therefore, L (1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4)

Finding the Articulation Points:

Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an

articulation point if it has two or more child nodes.

Vertex 2: is an articulation point as child 5 has L (5) = 6 and
DFN (2) = 6, So, the condition L (5) = DFN (2) is true.

Vertex 3: is an articulation point as child 10 has L (10) = 4 and

DFN (3) =3, So, the condition L (10) > DFN (3) is true.

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and
DFN (4) = 2, So, the condition L (3) > DFN (4) is false.

Vertex 5: is an articulation point as child 6 has L (6) = 8, and
DFN (5) = 7, So, the condition L (6) > DFN (5) is true.

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and
DFN (7) = 9, So, the condition L (8) > DFN (7) is false.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 41

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes.

Therefore, the articulation points are {2, 3, 5}.

Example:

For the following graph identify the articulation points and Biconnected components:

1

2

G ra p h

D F S s p a n ni n g T re e

L (u) = min {DFN (u), min {L (w) w is a child of u}, min {DFN (w) w

is a vertex to which there is back edge from u}}

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min {2, 3} = 2

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6

L (5) = min {DFN (5)} = 4

L (6) = min {DFN (6)} = 5

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6

Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any

child ofu. Vertex 1: Vertex 1 is not an articulation point.
It is a root node. Root is an articulation point if it has two or more
child nodes.

Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2.
So, the condition is true

Vertex 3: is an articulation Point as:

I. L (5) = 4 and DFN (3) = 3

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 42

II. L (6) = 5 and DFN (3) = 3 and

III. L (4) = 6 and

DFN (3) = 3 So, the

condition true in above

cases

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6.

So, the condition is true

Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7.

So, the condition is False

Vertex 5, Vertex 6 and Vertex 8 are leaf

nodes. Therefore, the articulation points

are {2, 3, 4}.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 43

GENERAL METHOD

Greedy Method

Greedy is the most straight forward design technique. Most of the problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any subset
that satisfies these constraints is called a feasible solution. We need to find a feasible
solution that either maximizes or minimizes the objective function. A feasible solution
that does this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one
element at a time, by choosing the best possible element at each stage. At each stage,
a decision is made regarding whether or not a particular input is in an optimal solution.
This is done by considering the inputs in an order determined by some selection
procedure. If the inclusion of the next input, into the partially constructed optimal
solution will result in an infeasible solution then this input is not added to the partial
solution. The selection procedure itself is based on some optimization measure. Several
optimization measures are plausible for a given problem. Most of them, however, will
result in algorithms that generate sub-optimal solutions. This version of greedy

technique is called subset paradigm. Some problems like Knapsack, Job sequencing
with deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each
decision is made using an optimization criterion that can be computed using decisions
already made. This version of greedy method is ordering paradigm. Some problems like
optimal storage on tapes, optimal merge patterns and single source shortest path are

based on ordering paradigm.

CONTROL ABSTRACTION

Algorithm Greedy (a, n)
// a(1 : n) contains the ‘n’ inputs

{
solution := ; // initialize the solution to empty

for i:=1 to n do
{

x := select (a);
if feasible (solution, x) then

solution := Union (Solution, x);
}

return solution;
}

Procedure Greedy describes the essential way that a greedy based algorithm will look,
once a particular problem is chosen and the functions select, feasible and union are
properly implemented.

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’.
Feasible is a Boolean valued function, which determines if ‘x’ can be included into the
solution vector. The function Union combines ‘x’ with solution and updates the objective
function.

Greedy method- General method, applications- Knapsack problem, Job sequencing with
deadlines, Minimum cost spanning trees, Single source shortest path problem.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 44

KNAPSACK PROBLEM:

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’
objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity

‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi
xi is earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to
be at most ‘m’. The problem is stated as:

n

maximize

subject to

i 1

n

i 1

pi xi

ai xi M where, 0 < xi < 1 and 1 < i < n

The profits and weights are positive numbers.

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the
algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m, n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of

// Objects ordered so that p[i] / w[i]> p[i + 1] / w[i + 1].

// m is the knapsack size and x[1: n] is the solution vector.

{

for i := 1 to n do x[i] := 0.0 // initialize x
U := m;
for i := 1 to n do

{
if (w(i) > U) then break;
x [i] := 1.0; U := U – w[i];

}

if (i < n) then x[i] := U / w[i];
}

Running time:

The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we
disregard the time to initially sort the objects, the algorithm requires only O(n) time.

Example:

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) =
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10).

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 45

1. First, we try to fill the knapsack by selecting the objects in some order:

x1 x2 x3 wi xi pi xi

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4
= 16.5

25 x 1/2 + 24 x 1/3 + 15 x 1/4 =
24.25

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit
earned is 25. Now, only 2 units of space is left, select the object with next largest
profit (p = 24). So, x2 = 2/15

x1 x2 x3 wi xi pi xi

1 2/15 0 18 x 1 + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2

3. Considering the objects in the order of non-decreasing weights wi.

x1 x2 x3 wi xi pi xi

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31

4. Considered the objects in the order of the ratio pi / wi .

p1/w1 p2/w2 p3/w3

25/18 24/15 15/10

1.4 1.6 1.5

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5
units of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the
profit earned is 7.5.

x1 x2 x3 wi xi pi xi

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5

This solution is the optimal solution.

JOB SEQUENCING WITH DEADLINES:

When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and
profit Pi > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its
deadline. Only one machine is available for processing jobs. An optimal solution is the
feasible solution with maximum profit.

Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤
k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is
feasible, we have just to insert i into J preserving the deadline ordering and then verify

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 46

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1.

Example:

Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1 d2 d3 d4) = (2, 1, 2, 1). The

feasible solutions and their values are:

S. No Feasible Solution Procuring
sequence

Value Remarks

1 1,2 2,1 110

2 1,3 1,3 or 3,1 115

3 1,4 4,1 127 OPTIMAL

4 2,3 2,3 25

5 3,4 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27

The algorithm constructs an optimal set J of jobs that can be processed by their
deadlines.

Algorithm GreedyJob (d, J, n)

// J is a set of jobs that can be completed by their deadlines.

{
J := {1};
for i := 2 to n do
{

if (all jobs in J U {i} can be completed by their dead lines)
then J := J U {i};

}
}

Minimum Spanning Trees (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the
vertex set of the given graph, and whose edge set is a subset of the edge set of the
given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum
spanning tree (MST) is a spanning tree with the smallest possible weight.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 47

G:

T hre e (of ma ny p o s s ib le) s p a n n in g t re e s fro m gra p h G:

A gra p h G:

A w e ig ht e d gra p h G: T h e min i ma l s p a n n in g t re e fro m w e ig ht e d gra p h G:

Here are some examples:

To explain further upon the Minimum Spanning Tree, and what it applies to, let's
consider a couple of real-world examples:

1. One practical application of a MST would be in the design of a network. For
instance, a group of individuals, who are separated by varying distances, wish
to be connected together in a telephone network. Although MST cannot do
anything about the distance from one connection to another, it can be used to
determine the least cost paths with no cycles in this network, thereby
connecting everyone at a minimum cost.

2. Another useful application of MST would be finding airline routes. The vertices of
the graph would represent cities, and the edges would represent routes between
the cities. Obviously, the further one has to travel, the more it will cost, so MST
can be applied to optimize airline routes by finding the least costly paths with no
cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the
Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology,
but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s
algorithm uses vertex connections in determining the MST.

Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.
picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the
shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges
have been added. Sometimes two or more edges may have the same cost. The order in
which the edges are chosen, in this case, does not matter. Different MSTs may result,
but they will all have the same total cost, which will always be the minimum cost.

G: 3

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 48

The algorithm for finding the MST, using the Kruskal’s method is as follows:

Algorithm Kruskal (E, cost, n, t)
// E is the set of edges in G. G has n vertices. cost [u, v] is the
// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree.

// The final cost is returned.

{

Construct a heap out of the edge costs using heapify;
for i := 1 to n do parent [i] := -1;

// Each vertex is in a different set.
i := 0; mincost := 0.0;

while ((i < n -1) and (heap not empty)) do
{

Delete a minimum cost edge (u, v) from the heap and
re-heapify using Adjust;
j := Find (u); k := Find (v);
if (j k) then
{

i := i + 1;
t [i, 1] := u; t [i, 2] := v;
mincost :=mincost + cost [u, v];
Union (j, k);

}
}

if (i n-1) then write ("no spanning tree");

else return mincost;
}

Running time:

 The number of finds is at most 2e, and the number of unions at most n-1.

Including the initialization time for the trees, this part of the algorithm has a
complexity that is just slightly more than O (n + e).

 We can add at most n-1 edges to tree T. So, the total time for operations on T is

O(n).

Summing up the various components of the computing times, we get O (n + e log e) as
asymptotic complexity

Example 1:

1 2
10 50

4 5 40
30 35

 25
55

20

15

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 49

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

The edge set T together with the vertices of G define a graph that has up to n
connected components. Let us represent each component by a set of vertices in it.
These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle,
we need to check whether u and v are in the same vertex set. If so, then a cycle is
created. If not then no cycle is created. Hence two Finds on the vertex sets suffice.
When an edge is included in T, two components are combined into one and a union is

to be performed on the two sets.

Edge Cost Spanning Forest Edge Sets Remarks

1 2 3 4 5 6

{1}, {2}, {3},
{4}, {5}, {6}

(1, 2)

10

1 2 3 4 5 6

{1, 2}, {3}, {4},
{5}, {6}

The vertices 1 and
2 are in different
sets, so the edge
is combined

(3, 6)

15

1 2 3 4 5

6

{1, 2}, {3, 6},
{4}, {5}

The vertices 3 and
6 are in different
sets, so the edge
is combined

(4, 6)

20

1 2 3 5

4 6

{1, 2}, {3, 4, 6},
{5}

The vertices 4 and
6 are in different
sets, so the edge
is combined

(2, 6)

25

1 2 5

4 3

6

{1, 2, 3, 4, 6},

{5}

The vertices 2 and

6 are in different
sets, so the edge
is combined

(1, 4)

30

Reject

 The vertices 1 and

4 are in the same
set, so the edge is
rejected

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 50

(3, 5)

35

1 2

4 5 3

6

{1, 2, 3, 4, 5, 6}

The vertices 3 and

5 are in the same

set, so the edge is
combined

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 51

MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we
have to select a cheapest one. This tree is called as minimal cost spanningtree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is
labeled with a number (edge labels may signify lengths, weights other than costs).
Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as
small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for
finding an MST. In the spanning tree algorithm, any vertex not in the tree but
connected to it by an edge can be added. To find a Minimal cost spanning tree, we
must be selective - we must always add a new vertex for which the cost of the new
edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an
Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

Algorithm Prim (E, cost, n, t)
// E is the set of edges in G. cost [1:n, 1:n] is the cost
// adjacency matrix of an n vertex graph such that cost [i, j] is

// either a positive real number or if no edge (i, j) exists.
// A minimum spanning tree is computed and stored as a set of
// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in

// the minimum-cost spanning tree. The final cost is returned.

{

Let (k, l) be an edge of minimum cost in E;
mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;

for i :=1 to n do // Initialize near
if (cost [i, l] < cost [i, k]) then near [i] := l;
else near [i] := k;

near [k] :=near [l] := 0;
for i:=2 to n - 1 do // Find n - 2 additional edges for t.
{

Let j be an index such that near [j] 0 and

cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];
mincost := mincost + cost [j, near [j]];
near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j]))

then near [k] := j;
}

return mincost;

}

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 52

Example:

Considering the following graph, find the minimal spanning tree using prim’s algorithm.

 4 9 8

4 4 1

The cost adjacent matrix is

9 4

3 3

8 1 3 4

 3 4

The minimal spanning tree obtained as:

The cost of Minimal spanning tree = 11.

The steps as per the algorithm are as follows:

Algorithm near (J) = k means, the nearest vertex to J is k.

The algorithm starts by selecting the minimum cost from the graph. The minimum cost

edge is (2, 4).

K = 2, l = 4
Min cost = cost (2, 4) = 1

T [1, 1] = 2

T [1, 2] = 4

Vertex 1 Vertex 2

2 4

3 4

5 3

1 2

1 4 4

4 3 5

2 3

3

4 1

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 53

for i = 1 to 5

Begin

i = 1
is cost (1, 4) < cost (1, 2)

8 < 4, No

Than near (1) = 2

i = 2

is cost (2, 4) < cost (2, 2)

1 < , Yes

So near [2] = 4

i = 3
is cost (3, 4) < cost (3, 2)

1 < 4, Yes

So near [3] = 4

i = 4

is cost (4, 4) < cost (4, 2)
 < 1, no

So near [4] = 2

i = 5

is cost (5, 4) < cost (5, 2)
4 < , yes

So near [5] = 4

end

near [k] = near [l] = 0

near [2] = near[4] = 0

Near matrix

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Edges added to min spanning

tree:

T [1, 1] = 2

T [1, 2] = 4

2 4 4 2

1 2 3 4 5

2 4 4 2 4

1 2 3 4 5

1 2 3 4 5

for i = 2 to n-1 (4) do

i = 2

for j = 1 to 5
j = 1

near(1)0 and cost(1, near(1))

2 0 and cost (1, 2) = 4

j = 2
near (2) = 0

j = 3

is near (3) 0

4 0 and cost (3, 4) = 3

2

2 4

2 4 4

2 0 4 0 4

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 54

j = 4

near (4) = 0

J = 5

Is near (5) 0

4 0 and cost (4, 5) = 4

select the min cost from the

above obtained costs, which is

3 and corresponding J = 3

min cost = 1 + cost(3, 4)
= 1 + 3 = 4

T (2, 1) = 3

T (2, 2) = 4

Near [j] = 0

i.e. near (3) =0

for (k = 1 to n)

K = 1
is near (1) 0, yes
2 0

and cost (1,2) > cost(1, 3)

4 > 9, No

K = 2

Is near (2) 0, No

K = 3

Is near (3) 0, No

K = 4

Is near (4) 0, No

K = 5
Is near (5) 0
4 0, yes
and is cost (5, 4) > cost (5, 3)

4 > 3, yes

than near (5) = 3

i = 3

for (j = 1 to 5)
J = 1
is near (1) 0

2 0

cost (1, 2) = 4

J = 2

Is near (2) 0, No

1 2 3 4 5

1 2 3 4 5

T (2, 1) = 3

T (2, 2) = 4

2 0 0 0 4

2 0 0 0 3

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 55

J = 3
Is near (3) 0, no

Near (3) = 0

J = 4
Is near (4) 0, no

Near (4) = 0

J = 5
Is near (5) 0

Near (5) = 3 3 0, yes

And cost (5, 3) = 3

Choosing the min cost from
the above obtaining costs
which is 3 and corresponding J
= 5

Min cost = 4 + cost (5, 3)

= 4 + 3 = 7

T (3, 1) = 5

T (3, 2) = 3

Near (J) = 0 near (5) = 0

for (k=1 to 5)

k = 1
is near (1) 0, yes

and cost(1,2) > cost(1,5)

4 > , No

K = 2

Is near (2) 0 no

K = 3

Is near (3) 0 no

K = 4

Is near (4) 0 no

K = 5

Is near (5) 0 no

i = 4

for J = 1 to 5
J = 1
Is near (1) 0

2 0, yes

cost (1, 2) = 4

j = 2

is near (2) 0, No

1 2 3 4 5

T (3, 1) = 5

T (3, 2) = 3

2 0 0 0 0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 56

J = 3

Is near (3) 0, No

Near (3) = 0

J = 4

Is near (4) 0, No

Near (4) = 0

J = 5

Is near (5) 0, No

Near (5) = 0

Choosing min cost from the

above it is only '4' and

corresponding J = 1

Min cost = 7 + cost (1,2)

= 7+4 = 11 0 0 0 0 0

T (4, 1) = 1

T (4, 1) = 1

T (4, 2) = 2 1 2 3 4 5 T (4, 2) = 2

Near (J) = 0 Near (1) = 0

for (k = 1 to 5)

K = 1

Is near (1) 0, No

K = 2

Is near (2) 0, No

K = 3

Is near (3) 0, No

K = 4

Is near (4) 0, No

K = 5

Is near (5) 0, No

End.

The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS:

In the previously studied graphs, the edge labels are called as costs, but here we think
them as lengths. In a labeled graph, the length of the path is defined to be the sum of
the lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest
path from a given source vertex to each of the vertices (called destinations) in the
graph to which there is a path.

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees.
Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 57

shortest path between then (or one of the shortest paths) if there is more than one.
The principle of optimality is the basis for Dijkstra’s algorithms.

Dijkstra’s algorithm does not work for negative edges at all.

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

8 0

2

3

4

Graph
6

Shortest Paths

Algorithm:

Algorithm Shortest-Paths (v, cost, dist, n)
// dist [j], 1 < j < n, is set to the length of the shortest path
// from vertex v to vertex j in the digraph G with n vertices.
// dist [v] is set to zero. G is represented by its
// cost adjacency matrix cost [1:n, 1:n].

{
for i :=1 to n do
{

S [i] := false; // Initialize S.
dist [i] :=cost [v, i];

}

S[v] := true; dist[v] := 0.0; // Put v in S.
for num := 2 to n – 1 do
{

Determine n - 1 paths from v.
Choose u from among those vertices not in S such that dist[u] is minimum;
S[u] := true; // Put u is S.
for (each w adjacent to u with S [w] = false) do

if (dist [w] > (dist [u] + cost [u, w]) then // Update distances
dist [w] := dist [u] + cost [u, w];

}

}

Running time:

Depends on implementation of data structures for dist.

 Build a structure with n elements A

 at most m = E times decrease the value of an item mB

 ‘n’ times select the smallest value nC

 For array A = O (n); B = O (1); C = O (n) which gives O (n2) total.

 For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n)

total.

 4

2

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 58

Dynamic Programming

Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic
programming, as greedy method, is a powerful algorithm design technique
that can be used when the solution to the problem may be viewed as the result
of a sequence of decisions. In the greedy method we make irrevocable
decisions one at a time, using a greedy criterion. However, in dynamic
programming we examine the decision sequence to see whether an optimal
decision sequence contains optimal decision subsequence.

When optimal decision sequences contain optimal decision subsequences, we
can establish recurrence equations, called dynamic-programming recurrence
equations, that enable us to solve the problem in an efficient way.

Dynamic programming is based on the principle of optimality (also coined by
Bellman). The principle of optimality states that no matter whatever the initial
state and initial decision are, the remaining decision sequence must constitute
an optimal decision sequence with regard to the state resulting from the first
decision. The principle implies that an optimal decision sequence is comprised
of optimal decision subsequences. Since the principle of optimality may not
hold for some formulations of some problems, it is necessary to verify that it

does hold for the problem being solved. Dynamic programming cannot be
applied when this principle does not hold.

The steps in a dynamic programming solution are:

 Verify that the principle of optimality holds

 Set up the dynamic-programming recurrence equations

 Solve the dynamic-programming recurrence equations for the value
of the optimal solution.

 Perform a trace back step in which the solution itself is constructed.

Dynamic programming differs from the greedy method since the greedy
method produces only one feasible solution, which may or may not be optimal,
while dynamic programming produces all possible sub-problems at most once,
one of which guaranteed to be optimal. Optimal solutions to sub-problems are
retained in a table, thereby avoiding the work of recomputing the answer every
time a sub-problem is encountered

The divide and conquer principle solve a large problem, by breaking it up into
smaller problems which can be solved independently. In dynamic programming
this principle is carried to an extreme: when we don't know exactly which
smaller problems to solve, we simply solve them all, then store the answers
away in a table to be used later in solving larger problems. Care is to be taken

UNIT III:

Dynamic Programming: General method, applications-Matrix chain multiplication,
Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem,

Travelling sales person problem, Reliability design.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 59

to avoid recomputing previously computed values, otherwise the recursive
program will have prohibitive complexity. In some cases, the solution can
be improved and in other cases, the dynamic programming technique is the

best approach.

Two difficulties may arise in any application of dynamic programming:

1. It may not always be possible to combine the solutions of smaller
problems to form the solution of a larger one.

2. The number of small problems to solve may be un-acceptably large.

There is no characterized precisely which problems can be effectively
solved with dynamic programming; there are many hard problems for which it
does not seen to be applicable, as well as many easy problems for which it is
less efficient than standard algorithms.

All pairs shortest paths:

In the all pairs shortest path problem, we are to find a shortest path between
every pair of vertices in a directed graph G. That is, for every pair of vertices
(i, j), we are to find a shortest path from i to j as well as one from j to i.
These two paths are the same when G is undirected.

When no edge has a negative length, the all-pairs shortest path problem may

be solved by using Dijkstra’s greedy single source algorithm n times, once with
each of the n vertices as the source vertex.

The all pairs shortest path problem is to determine a matrix A such that A (i, j)
is the length of a shortest path from i to j. The matrix A can be obtained by
solving n single-source problems using the algorithm shortest Paths. Since
each application of this procedure requires O (n2) time, the matrix A can be
obtained in O (n3) time.

The dynamic programming solution, called Floyd’s algorithm, runs in O (n3) time.
Floyd’s algorithm works even when the graph has negative length edges (provided
there are no negative length cycles).

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some
intermediate vertices (possibly none) and terminates at vertex j. If k is an
intermediate vertex on this shortest path, then the subpaths from i to k and
from k to j must be shortest paths from i to k and k to j, respectively.
Otherwise, the i to j path is not of minimum length. So, the principle of
optimality holds. Let Ak (i, j) represent the length of a shortest path from i to j

going through no vertex of index greater than k, we obtain:

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Algorithm All Paths (Cost, A, n)
// cost [1:n, 1:n] is the cost adjacency matrix of a graph which

// n vertices; A [I, j] is the cost of a shortest path from vertex
// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.
{

for i := 1 to n do
for j:= 1 to n do

A [i, j] := cost [i, j]; // copy cost

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 60

into A. for k := 1 to n do
for i := 1 to n do

for j := 1 to n do

A [i, j] := min (A [i, j], A [i, k] + A [k, j]);
}

Complexity Analysis: A Dynamic programming algorithm based on this
recurrence involves in calculating n+1 matrices, each of size n x n. Therefore,
the algorithm has a complexity of O (n3).

Example 1:

Given a weighted digraph G = (V, E) with weight. Determine the length of
the shortest path between all pairs of vertices in G. Here we assume that
there are no cycles with zero or negative cost.

Cost adjacency matrix (A0) =

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Solve the problem for different values of k = 1, 2 and 3

Step 1: Solving the equation for, k = 1;

A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0

1

3

4

1 1

2

2

0
6

4
0

11
2

3

0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 61

A(1) =

0 4

6 0

3 7

11

0

Step 2: Solving the equation for, K = 2;

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0

A(2) =

0 4

6 0

3 7

6

0

Step 3: Solving the equation for, k = 3;

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0

2

2

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 62

5 0

 0 4 6

A(3) =

2

3 7 0

TRAVELLING SALESPERSON PROBLEM:

Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined such
that cij > 0 for all I and j and cij = if < i, j> E. Let |V| = n and assume n > 1. A
tour of G is a directed simple cycle that includes every vertex in V. The cost of a tour
is the sum of the cost of the edges on the tour. The traveling sales person problem is
to find a tour of minimum cost. The tour is to be a simple path that starts and ends
at vertex 1.

Let g (i, S) be the length of shortest path starting at vertex i, going through all
vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that:

g1, V - 1 min
2 k n

c1k g k, V 1, k -- 1

Generalizing equation 1, we obtain (for i S)

g i, S minci j

j S

 g i, S j -- 2

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all
choices of k.

Example :

For the following graph find minimum cost tour for the traveling salesperson
problem:

0

The cost adjacency matrix =
5

6

8

10 15

0 9

13 0

8 9

20
10

12

0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 63

Let us start the tour from vertex 1:

g (1, V – {1}) = min {c1k + g (k, V – {1, K})} - (1)
2<k<n

More generally writing:

g (i, s) = min {cij + g (J, s – {J})} - (2)

Clearly, g (i,) = ci1 , 1 ≤ i ≤ n. So,

g (2,) = C21 = 5

g (3,) = C31 = 6

g (4,) = C41 = 8

Using equation – (2) we obtain:

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})}

= min {9 + g (3, {4}), 10 + g (4, {3})}

g (3, {4}) = min {c34 + g (4,)} = 12 + 8 = 20

g (4, {3}) = min {c43 + g (3,)} = 9 + 6 = 15

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4,{2})}

g (2, {4}) = min {c24 + g (4,)} = 10 + 8 = 18

g (4, {2}) = min {c42 + g (2,)} = 8 + 5 = 13

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} = 25

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})}

g (2, {3}) = min {c23 + g (3, } = 9 + 6 = 15

g (3, {2}) = min {c32 + g (2, } = 13 + 5 = 18

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} =23

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}

= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35

The optimal tour for the graph has length = 35

The optimal tour is: 1, 2, 4, 3, 1.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 64

1 i i

0/1 – KNAPSACK:

We are given n objects and a knapsack. Each object i has a positive weight wi and a
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack
so that the value of objects in the knapsack is optimized.

A solution to the knapsack problem can be obtained by making a sequence of
decisions on the variables x1, x2, , xn. A decision on variable xi involves
determining which of the values 0 or 1 is to be assigned to it. Let us assume that

decisions on the xi are made in the order xn, xn-1, x1. Following a decision on xn,
we may be in one of two possible states: the capacity remaining in m – wn and a
profit of pn has accrued. It is clear that the remaining decisions xn-1, , x1 must be
optimal with respect to the problem state resulting from the decision on xn.
Otherwise, xn, , x1 will not be optimal. Hence, the principal of optimality holds.

Fn (m) = max {fn-1 (m), fn-1 (m - wn) + pn} -- 1

For arbitrary fi (y), i > 0, this equation generalizes to:

Fi (y) = max {fi-1 (y), fi-1 (y - wi) + pi} -- 2

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using
equation–2.

When the wi’s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi

(y) = - for y < 0, these function values need not be computed explicitly. Since
each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute
fn. When the wi’s are real numbers, fi (y) is needed for real numbers y such that 0 <
y < m. So, fi cannot be explicitly computed for all y in this range. Even when the wi’s
are integer, the explicit Θ (m n) computation of fn may not be the most efficient
computation. So, we explore an alternative method for both cases.

The fi (y) is an ascending step function; i.e., there are a finite number of y’s, 0 = y1
< y2 < < yk, such that fi (y1) < fi (y2) < < fi (yk); fi (y) = - , y < y1; fi

(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 =
{(0, 0)}. We can compute Si+1 from Si by first computing:

Si = {(P, W) | (P – p , W – w) Si}

Now, Si+1 can be computed by merging the pairs in Si and Si to1gether. Note that if

Si+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj >
Wk, then the pair (Pj, Wj) can be discarded because of equation-2. Discarding or
purging rules such as this one are also known as dominance rules. Dominated tuples
get purged. In the above, (Pk, Wk) dominates (Pj, Wj).

Example 1:

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1, 2,

5) and M = 6.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 65

Solution:

Initially, fo (x) = 0, for all x and fi (x) = - if x < 0.

Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn}

F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5}

F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2}

F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1

F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1

Therefore, F2 (6) = max (1, 1 + 2} = 3

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - + 2}

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1

F2 (2) = max {1, - + 2} = 1

Finally, f3 (6) = max {3, 1 + 5} = 6

Other Solution:

For the given data we have:

S0 = {(0, 0)}; S0 = {(11, 2)}

S1 = (S0 U S0

1) = {(0, 0), (1, 2)}

X - 2 = 0 => x = 2. y – 3 = 0 => y = 3
X - 2 = 1 => x = 3. y – 3 = 2 => y = 5

S11 = {(2, 3), (3, 5)}

S2 = (S1 U S1
1) = {(0, 0), (1, 2), (2, 3), (3, 5)}

X – 5 = 0 => x = 5. y – 4 = 0 => y = 4
X – 5 = 1 => x = 6. y – 4 = 2 => y = 6

X – 5 = 2 => x = 7. y – 4 = 3 => y = 7
X – 5 = 3 => x = 8. y – 4 = 5 => y = 9

S21 = {(5, 4), (6, 6), (7, 7), (8, 9)}

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)}

By applying Dominance rule,

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)}

From (6, 6) we can infer that the maximum Profit pi xi = 6 and weight xi wi = 6

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 66

Reliability Design:

The problem is to design a system that is composed of several devices connected in
series. Let ri be the reliability of device Di (that is ri is the probability that device i
will function properly) then the reliability of the entire system is ri. Even if the
individual devices are very reliable (the ri’s are very close to one), the reliability of
the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10,
then ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the
same device type are connected in parallel.

If stage i contains mimcopies of device Di. Then the probability that all mi hamve a

malfunction is (1 - r) i. Hence the reliability of stage i becomes 1 – (1 - r) i.
i i

The reliability of stage ‘i’ is given by a function i (mi).

Our problem is to use device duplication. This maximization is to be carried out under
a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum
allowable cost of the system being designed.

We wish to solve:

Maximize i mi
1 i n

Subject to Ci mi C
1 i n

mi > 1 and interger, 1 < i < n

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 67

Assume each Ci > 0, each mi must be in the range 1 < mi < ui, where

 n

ui C Ci CJ
Ci

 1

The upper bound ui follows from the observation that mj > 1

An optimal solution m1, m2 mn is the result of a sequence of decisions, one
decision for each mi.

Let fi (x) represent the maximum value of

Subject to the constrains:

1 j i

 mJ

CJ mJ x
1 j i

and 1 < mj < uJ, 1 < j < i

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 68

30

j

Example :

Design a three stage system with device types D1, D2 and D3. The costs are $30, $15
and $20 respectively. The Cost of the system is to be no more than $105. The

reliability of each device is 0.9, 0.8 and 0.5 respectively.

Solution:

We assume that if if stage I has mi devices of type i in parallel, then i (mi) =1 – (1-

ri)mi

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:

 n

ui C Ci C
J Ci

 1

Using the above equation compute u1, u2 and u3.

105 30 3015 20
u1

30
 70

 2

10515 3015 20 55

u2
15

15

 3

105 20 3015 20 60

u3 3
20 20

We useSi i:stage number and J: no. of devices in stage i mi

So fo (x), x initially fo x 1 and x 0, so, So 1,0

Compute S1, S2 and S3 as follows:

S1 = depends on u1 value, as u1 = 2, so

S1 S1, S1
1 2

S2 = depends on u2 value, as u2 = 3, so

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 69

2

1 1

mi 1

1

2

3

S2 S 2, S 2 , S2
1 2 3

S3 = depends on u3 value, as u3 = 3, so

S3 S 3, S 3 , S3
1 2 3

Now find,S1 f (x), x

f1 x 1 (1) fo , 1 (2) f 0 ()} With devices m1 = 1 and m2 = 2

Compute 1 (1) and 1 (2) using the formula: i mi) 1 (1 ri)mi

1 1 1 1 r1m 1
= 1 – (1 – 0.9)1 = 0.9

1 2 1 1 0.92 0.99

S1 f1 x, x 0.9, 30
1

S1 0.99 , 30 30 0.99,

60 Therefore, S1 = {(0.9, 30),

(0.99, 60)}

Next findS2 f (x), x
1 2

f2 (x) {2 1 * f1 , 2 2 * f1 , 2 3 * f1 }

2 1 1 1 rI = 1 – (1 – 0.8) = 1 – 0.2 = 0.8

2 2 1 1 0.8 2

 0.96

2 3 1 1 0.8 3 0.992

S2 {(0.8(0.9),30 15), (0.8(0.99),60 15)} = {(0.72, 45), (0.792, 75)}

S2 {(0.96(0.9),30 15 15) , (0.96(0.99),60 15 15)}

= {(0.864, 60), (0.9504, 90)}

S2 {(0.992(0.9),30 15 1515) , (0.992(0.99),60 15 1515)}

= {(0.8928, 75), (0.98208, 105)}

S2 S2 , S2 , S 2
1 2 3

By applying Dominance rule to S2:

Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 70

1

1

2

3

3

Dominance Rule:

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1
≤ x2, then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be
discarded. Discarding or pruning rules such as the one above is known as
dominance rule. Dominating tuples will be present in Si and Dominated tuples
has to be discarded from Si.

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1,

x1) Case 2: if f1 > f2 and x1 < x2 the discard

(f2, x2) Case 3: otherwise simply write (f1, x1)

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

 3 1 1 1 rI mi
= 1 – (1 – 0.5)1 = 1 – 0.5 = 0.5

 3 2 1 1 0.5 2

 3 3 1 1 0.5 3

 0.75

 0.875

S3 0.5 (0.72), 45 20, 0.5 (0.864), 60 20, 0.5 (0.8928), 75 20

S3 0.36, 65, 0.437, 80, 0.4464, 95

S3 {0.75 (0.72), 45 20 20, 0.75 (0.864), 60 20 20,

0.75 (0.8928), 75 20 20}

= {(0.54, 85), (0.648, 100), (0.6696, 115)}

S3 0.875 (0.72), 45 20 20 20, 0.875 (0.864), 60 20 20 20,

0.875 (0.8928), 75 20 20 20

S3 (0.63, 105), 1.756, 120, 0.7812, 135

If cost exceeds 105, remove that tuples

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and a cost of 100. Tracing back
forthe solution through Si ‘s we can determine that m3 = 2, m2 = 2 and m1
= 1.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 73

Optimal Binary Search Tree:
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-

balanced binary tree,[1] is a binary search tree which provides the smallest possible search time (or

expected search time) for a given sequence of accesses (or access probabilities).

The no of external nodes are same in both trees.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Optimal_binary_search_tree#cite_note-1
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 74

The C (i, J) can be computed as:

C (i, J) = min {C (i, k-1) + C (k, J) + P (K) + w (i, K-1) + w (K,J)}
i<k<J

= min {C (i, K-1) + C (K, J)} + w (i, J) -- (1)
i<k<J

Where W (i, J) = P (J) + Q (J) + w (i, J-1) -- (2)

Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 < i < n.

C (i, J) is the cost of the optimal binary search tree 'Tij' during computation
we record the root R (i, J) of each tree 'Tij'. Then an optimal binary search
tree may be constructed from these R (i, J). R (i, J) is the value of 'K' that
minimizes equation (1).

We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i, i+1), 0 ≤ i
< 4; Knowing W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating

until W (0, n), C (0, n) and R (0, n) are obtained.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 75

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 76

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 77

Matrix chain multiplication

The problem

Given a sequence of matrices A1, A2, A3, ..., An, find the best way (using the minimal number
of multiplications) to compute their product.

• Isn’t there only one way? ((· · · ((A1 · A2) · A3) · · ·) · An)

• No, matrix multiplication is associative.

e.g. A1 · (A2 · (A3 · (· · · (An−1 · An) · · ·))) yields the same matrix.

• Different multiplication orders do not cost the same:

– Multiplying p × q matrix A and q × r matrix B takes p · q · r multiplications; result is a

p × r matrix.

– Consider multiplying 10 × 100 matrix A1 with 100 × 5 matrix A2 and 5 ×50 matrix A3.

– (A1 · A2) · A3 takes 10 · 100 · 5 + 10 · 5 · 50 = 7500 multiplications.

– A1 · (A2 · A3) takes 100 · 5 · 50 + 10 · 50 · 100 = 75000 multiplications.

Notation

• In general, let Ai be pi−1 × pimatrix.

• Let m(i, j) denote minimal number of multiplications needed to compute Ai · Ai+1 · · · Aj

• We want to compute m(1, n).

Recursive algorithm

• Assume that someone tells us the position of the last product, say k. Then we have to

compute recursively the best way to multiply the chain from i to k, and from k + 1 to j,
and add the cost of the final product. This means that

m(i, j) = m(i, k) + m(k + 1, j) + pi−1 · pk · pj

• If noone tells us k, then we have to try all possible values of k and pick the best solution.

• Recursive formulation of m(i, j):
.

m(i,j) =
0 If i= j

mini≤k<j{m(i,k)+m(k+1,j)+pi−1·pk·pj} If i < j

• To go from the recursive formulation above to a program is pretty straightforward:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 78

• Running

time:
T (n) =

nΣ−1

k=1

(T (k) + T (n− k) + O(1))

Σn−1

= 2·
k=1

T (k) + O(n)

• Exponential is ...
SLOW!

≥ 2 · T (n − 1)

≥ 2 · 2 · T (n − 2)

≥ 2 · 2 · 2 . . .

= 2n

• Problem is that we compute the same result over and over again.

– Example: Recursion tree for Matrix-chain(1, 4)
1,4

1,1 2,4 1,2 3,4 1,3 4,4

2,2 3,4 2,3 4,4 1,1 2,2 3,3 4,4 1,1 2,3 1,2 3,3

3,3 4,4 2,2 3,3 2,2 3,3 1,1 2,2

Matrix-chain(i, j)

IF i = j THEN return 0

m = ∞

FOR k = i TO j − 1 DO

q = Matrix-chain(i, k) + Matrix-chain(k + 1, j) +pi−1 · pk · pj

IF q < m THEN m = q

OD

Return m

END Matrix-chain

Return Matrix-

Design and Analysis of Algorithms AY: 2024-25

For example, we compute Matrix-chain(3, 4) twice.

Dynamic programming with a table and recursion

• Solution is to “remember” the values we have already computed in a table. This is called

memoization. We’ll have a table T[1..n][1..n] such that T[i][j] stores the solution to
problem Matrix-CHAIN(i,j). Initially all entries will be set to ∞.

• The code for MATRIX-CHAIN(i,j) stays the same, except that it now uses the table.
The first thing MATRIX-CHAIN(i,j) does is to check the table to see if T [i][j] is
already computed. Is so, it returns it, otherwise, it computes it and writes it in the
table. Below is the updated code.

• The table will prevent a subproblem MATRIX-CHAIN(i,j) to be computed more
thanonce.

• Running time:

– Θ(n2) different calls to matrix-chain(i, j).

– The first time a call is made it takes O(n) time, not counting recursive calls.

– When a call has been made once it costs O(1) time to make it again.

O(n3) time

– Another way of thinking about it: Θ(n2) total entries to fill, it takes O(n) to fill

one.

FOR i = 1 to n

DO FOR j = i

to n DO

T [i][j] = ∞

OD

OD

 k k

 m

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 80

BACKTRACKING

General Method:

Backtracking is used to solve problem in which a sequence of objects is chosen from a
specified set so that the sequence satisfies some criterion. The desired solution is
expressed as an n-tuple (x1, , xn) where each xi Є S, S being a finite set.

The solution is based on finding one or more vectors that maximize, minimize, or satisfy

a criterion function P (x1, , xn). Form a solution and check at every step
if this has any chance of success. If the solution at any point seems not promising,
ignore it. All solutions requires a set of constraints divided into two categories: explicit
and implicit constraints.

Definition 1: Explicit constraints are rules that restrict each xi to take on values only

from a given set. Explicit constraints depend on the particular instance Iof
problem being solved. All tuples that satisfy the explicit constraints define
a possible solution space for I.

Definition 2: Implicit constraints are rules that determine which of the tuples in the

solution space of I satisfy the criterion function. Thus, implicit constraints

describe the way in which the xi’s must relate to each other.

 For 8-queens problem:

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 4,
5, 6, 7, 8}.

The implicit constraints for this problem are that no two queens can be the same
(i.e., all queens must be on different columns) and no two queens can be on the
same diagonal.

Backtracking is a modified depth first search of a tree. Backtracking algorithms
determine problem solutions by systematically searching the solution space for the
given problem instance. This search is facilitated by using a tree organization for the
solution space.

Backtracking is the procedure whereby, after determining that a node can lead to

nothing but dead end, we go back (backtrack) to the nodes parent and proceed with the
search on the next child.

A backtracking algorithm need not actually create a tree. Rather, it only needs to
keep track of the values in the current branch being investigated. This is the way we
implement backtracking algorithm. We say that the state space tree exists implicitly in
the algorithm because it is not actually constructed.

State space is the set of paths from root node to other nodes. State space tree is the
tree organization of the solution space. The state space trees are called static trees. This

UNIT IV

Backtracking: General method, Applications- n-queue problem, Sum of subsets problem,

Graph coloring, Hamiltonian cycles.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 81

terminology follows from the observation that the tree organizations are independent of
the problem instance being solved. For some problems it is advantageous to use
different tree organizations for different problem instance. In this case the tree
organization is determined dynamically as the solution space is being searched. Tree
organizations that are problem instance dependent are called dynamic trees.

Terminology:

Problem state is each node in the depth first search tree.

Solution states are the problem states ‘S’ for which the path from the root node to
‘S’ defines a tuple in the solution space.

Answer states are those solution states for which the path from root node to s
defines a tuple that is a member of the set of solutions.

Live node is a node that has been generated but whose children have not yet been
generated.

E-node is a live node whose children are currently being explored. In other words, an
E-node is a node currently being expanded.

Dead node is a generated node that is not to be expanded or explored any further.
All children of a dead node have already been expanded.

Branch and Bound refers to all state space search methods in which all children of
an E-node are generated before any other live node can become the E-node.

Depth first node generation with bounding functions is called backtracking. State
generation methods in which the E-node remains the E-node until it is dead, lead to
branch and bound methods.

N-Queens Problem:

Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8
chessboard so that no two “attack”, that is, no two of them are on the same row,
column, or diagonal.
All solutions to the 8-queens problem can be represented as 8-tuples (x1, , x8),

where xi is the column of the ith row where the ith queen is placed.

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i <
8. Therefore the solution space consists of 88 8-tuples.

The implicit constraints for this problem are that no two xi’s can be the same (i.e., all

queens must be on different columns) and no two queens can be on the same

diagonal.
This realization reduces the size of the solution space from 88 tuples to 8! Tuples.

The promising function must check whether two queens are in the same column or
diagonal:
Suppose two queens are placed at positions (i, j) and (k, l) Then:

 Column Conflicts: Two queens conflict if their xi values are identical.

 Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 82

i – j = k – l.

This implies, j – l = i – k

 Diag 135 conflict:

i + j = k + l. This implies, j – l = k – i

 Therefore, two queens lie on the same diagonal if and only if:

j - l = i – k

Where, j be the column of object in row i for the ith queen and l be the column of
object in row ‘k’ for the kth queen.

To check the diagonal clashes, let us take the following tile configuration:

In this example, we have:

i 1 2 3 4 5 6 7 8

xi 2 5 1 8 4 7 3 6

Let us consider for the

case whether the queens on 3rd row and 8th row
are conflicting or not. In this

case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore:

j - l = i – k 1 - 6 = 3 – 8

 5 = 5

In the above example we have, j - l = i – k , so the two queens are attacking.

This is not a solution.

Example:

Suppose we start with the feasible sequence 7, 5, 3, 1.

Step 1:

Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet

used.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 83

Step 2:

If this new sequence is feasible and has length 8 then STOP with a solution. If
the new sequence is feasible and has length less then 8, repeat Step 1.

Step 3:

If the sequence is not feasible, then backtrack through the sequence until we
find the most recent place at which we can exchange a value. Go back to Step
1.

1 2 3 4 5 6 7 8
Remarks

7 5 3 1

7 5 3 1* 2*
 j - l = 1 – 2 = 1

i – k = 4 – 5 = 1

7 5 3 1 4

7* 5 3 1 4 2*
 j - l = 7 – 2 = 5

i – k = 1 – 6 = 5

7 5 3* 1 4 6*
 j - l = 3 – 6 = 3

i – k = 3 – 6 = 3

7 5 3 1 4 8

7 5 3 1 4* 8 2*
 j - l = 4 – 2 = 2

i – k = 5 – 7 = 2

7 5 3 1 4* 8 6*
 j - l = 4 – 6 = 2

i – k = 5 – 7 = 2

7 5 3 1 4 8 Backtrack

7 5 3 1 4 Backtrack

7 5 3 1 6

7* 5 3 1 6 2*
 j - l = 1 – 2 = 1

i – k = 7 – 6 = 1

7 5 3 1 6 4

7 5 3 1 6 4 2

7 5 3* 1 6 4 2 8*
j - l = 3 – 8 = 5

i – k =3 – 8 = 5

7 5 3 1 6 4 2 Backtrack

7 5 3 1 6 4 Backtrack

7 5 3 1 6 8

7 5 3 1 6 8 2

7 5 3 1 6 8 2 4 SOLUTION

* indicates conflicting queens.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 84

On a chessboard, the solution will look like:

 4 – Queens Problem:

Let us see how backtracking works on the 4-queens problem. We start with the root

node as the only live node. This becomes the E-node. We generate one child. Let us
assume that the children are generated in ascending order. Let us assume that the
children are generated in ascending order. Thus node number 2 of figure is generated
and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2
becomes the E-node. Node 3 is generated and immediately killed. The next node
generated is node 8 and the path becomes (1, 3). Node 8 becomes the E-node.
However, it gets killed as all its children represent board configurations that cannot
lead to an answer node. We backtrack to node 2 and generate another child, node 13.
The path is now (1, 4). The board configurations as backtracking proceeds is as
follows:

(a) (b) (c) (d)

(e) (f) (g) (h)

The above figure shows graphically the steps that the backtracking algorithm goes

through as it tries to find a solution. The dots indicate placements of a queen, which
were tried and rejected because another queen was attacking.

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on
column 3. In figure (c) the algorithm tries all four columns and is unable to place the
next queen on a square. Backtracking now takes place. In figure (d) the second
queen is moved to the next possible column, column 4 and the third queen is placed
on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that
the algorithm goes through until a solution is found.

1

1

. . 2

1

 2

. . .

1

 2

. 3

1

 2

 3

. . . .

 1

 1

. . . 2

 1

 2

3

. . 4

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 85

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 86

Complexity Analysis:

1 n n2 n3 nn

 n

n 1 1

n 1

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 87

For the instance in which n = 8, the state space tree contains:

88 1 1 = 19, 173, 961 nodes
8 1

Sum of Subsets:

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets
of wi whose sums are ‘m’.

All solutions are k-tuples, 1 ≤ k ≤ n.

Explicit constraints:

 xi Є {j | j is an integer and 1 ≤ j ≤n}.

Implicit constraints:

 No two xi can be the same.

 The sum of the corresponding wi’s be m.

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple
instances of the same subset (for example, (1, 2, 4) and (1, 4, 2)
represent the same subset).

A better formulation of the problem is where the solution subset is represented by an
n-tuple (x1, , xn) such that xi Є {0, 1}.

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1).

For both the above formulations, the solution space is 2n distincttuples.

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are(11,
13, 7) and (24, 7).

The following figure shows a possible tree organization for two possible formulations
of the solution space for the case n = 4.

A p o s s ib le s o lut io n s p ac e org a n is at io n f or t h e

s u m of t h e s u b s et s pro ble m.

The tree corresponds to the variable tuple size formulation. The edges are labeled
such that an edge from a level i node to a level i+1 node represents a value for x i. At
each node, the solution space is partitioned into sub - solution spaces. All paths from
the root node to any node in the tree define the solution space, since any such path

x1 =1

x1 =3

x1 =2

2 3 4 5

x2 =2

x 2 =4 x 2 =3 x2 =4
x2 =4

 9 10

x 3 =3

12

x 4 =4

16

x3 =4

13 14

x3 =4 x 3 =4

15

11

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 88

corresponds to a subset satisfying the explicit constraints.

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2,

3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next

sub-tree defines all subsets containing w2 but not w1, and so on.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 89

Graph Coloring (for planar graphs):

Let G be a graph and m be a given positive integer. We want to discover whether the
nodes of G can be colored in such a way that no two adjacent nodes have the same
color, yet only m colors are used. This is termed the m-colorabiltiy decision problem.
The m-colorability optimization problem asks for the smallest integer m for which the
graph G can be colored.

Given any map, if the regions are to be colored in such a way that no two adjacent
regions have the same color, only four colors are needed.

For many years it was known that five colors were sufficient to color any map, but no
map that required more than four colors had ever been found. After several hundred
years, this problem was solved by a group of mathematicians with the help of a
computer. They showed that in fact four colors are sufficient for planar graphs.

The function m-coloring will begin by first assigning the graph to its adjacency matrix,
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of
node i.

A recursive backtracking algorithm for graph coloring is carried out by invoking the
statement mcoloring(1);

Algorithm mcoloring (k)
// This algorithm was formed using the recursive backtracking schema. The graph is
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of
// 1, 2, , m to the vertices of the graph such that adjacent vertices areassigned
// distinct integers are printed. k is the index of the next vertex to color.

{

repeat
{ // Generate all legal assignments for x[k].

NextValue (k); // Assign to x [k] a legal color.
If (x [k] = 0) then return; // No new color possible
If (k = n) then // at most m colors have been

// used to color the n vertices.
write (x [1: n]);

else mcoloring (k+1);

} until (false);
}

Algorithm NextValue (k)
// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that
// adjacent vertices have distinct integers. A value for x [k] is determined in the range
// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.
{

repeat
{

x [k]: = (x [k] +1) mod (m+1) // Next highest color.

If (x [k] = 0) then return; // All colors have been used
for j := 1 to n do
{ // check if this color is distinct from adjacent colors

if ((G [k, j] 0) and (x [k] = x [j]))
// If (k, j) is and edge and if adj. vertices have the same color.
then break;

Design and Analysis of Algorithms AY: 2024-25

}
if (j = n+1) then return; // New color found

} until (false); // Otherwise try to find another color.
}

Example:

Color the graph given below with minimum number of colors by
backtracking using state space tree

Hamiltonian Cycles:

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle
(suggested by William Hamilton) is a round-trip path along n edges of G
that visits every vertex once and returns to its starting position. In other

vertices of G are visited in the order v1, v2, , vn+1, then the edges

(vi, vi+1) are in E, 1 < i < n, and the vi are distinct expect for v1 and vn+1,
which are equal. The graph G1 contains the Hamiltonian cycle 1, 2, 8, 7, 6,
5, 4, 3, 1. The graph G2 contains no Hamiltonian cycle.

Two graphs to illustrate Hamiltonian cycle

The backtracking solution vector (x1, xn) is defined so that xi

represents the ith visited vertex of the proposed cycle. If k = 1, then x1 can
be any of the n vertices. To avoid printing the same cycle n times, we
require that x1 = 1. If 1 < k < n, then xk can be any vertex v that is
distinct from x1, x2, . . . , xk–1 and v is connected by an edge to kx-1. The

x1

1 2 x2

x3

 2 2 3 1 2 2 3 1

Gra p h
x4

2 3 2 2 3 3 1 3 1 3 1 3 1 1 2 2 1 2

1 2

Graph G1 Graph G2

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 91

Branch and Bound

General method:

Branch and Bound is another method to systematically search a solution space. Just
like backtracking, we will use bounding functions to avoid generating subtrees that

do not contain an answer node. However branch and Bound differs from backtracking
in two important manners:

1. It has a branching function, which can be a depth first search, breadth first

search or based on bounding function.

2. It has a bounding function, which goes far beyond the feasibility test as a

mean to prune efficiently the search tree.

Branch and Bound refers to all state space search methods in which all children of
the E-node are generated before any other live node becomes the E-node

Branch and Bound is the generalization of both graph search strategies, BFS and D-
search.

 A BFS like state space search is called as FIFO (First in first out) search

as the list of live nodes in a first in first out list (or queue).

 A D search like state space search is called as LIFO (Last in first out)
search as the list of live nodes in a last in first out (or stack).

Definition 1: Live node is a node that has been generated but whose children have
not yet been generated.

Definition 2: E-node is a live node whose children are currently being explored. In
other words, an E-node is a node currently being expanded.

Definition 3: Dead node is a generated node that is not to be expanded or explored
any further. All children of a dead node have already been expanded.

Definition 4: Branch-an-bound refers to all state space search methods in which all

children of an E-node are generated before any other live node can
become the E-node.

Definition 5: The adjective "heuristic", means" related to improving problem solving
performance". As a noun it is also used in regard to "any method or trick
used to improve the efficiency of a problem solving problem". But
imperfect methods are not necessarily heuristic or vice versa. "A heuristic
(heuristic rule, heuristic method) is a rule of thumb, strategy, trick

simplification or any other kind of device which drastically limits search
for solutions in large problem spaces. Heuristics do not guarantee optimal
solutions, they do not guarantee any solution at all. A useful heuristic
offers solutions which are good enough most of the time.

UNIT V:

Branch and Bound: General method, applications - Travelling sales person
problem,0/1 knapsack problem- LC Branch and Bound solution, FIFO Branch
and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non deterministic
algorithms, NP - Hard and NP Complete classes, Cook’s theorem.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 92

Least Cost (LC) search:

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in
rigid and blind. The selection rule for the next E-node does not give any preference
to a node that has a very good chance of getting the search to an answer node
quickly.

The search for an answer node can be speeded by using an “intelligent” ranking

function c() for live nodes. The next E-node is selected on the basis of this ranking

function. The node x is assigned a rank using:

c(x) = f(h(x)) + g(x)

where, c(x) is the cost of x.

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing
function.

g (x) is an estimate of the additional effort needed to reach an answer node

from x.

A search strategy that uses a cost function c(x) = f(h(x) + g(x) to select the next

E-node would always choose for its next E-node a live node with least

LC–search (Least Cost search)

c(.) is called a

BFS and D-search are special cases of LC-search. If g(x) = 0 and f(h(x)) = level of
node x, then an LC search generates nodes by levels. This is eventually the same as

a BFS. If f(h(x)) = 0 and

essentially a D-search.

g(x) > g(y) whenever y is a child of x, then the search is

An LC-search coupled with bounding functions is called an LC-branch and bound
search

We associate a cost c(x) with each node x in the state space tree. It is not possible to

easily compute the function c(x). So we compute a estimate c(x) of c(x).

Control Abstraction for LC-Search:

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in
t, then c(x) is the minimum cost of any answer node in the subtree with root x. Thus,
c(t) is the cost of a minimum-cost answer node in t.

A heuristic c(.) is used to estimate c(). This heuristic should be easy to compute and
generally has the property that if x is either an answer node or a leaf node, then

c(x) = c(x) .

LC-search uses c to find an answer node. The algorithm uses two functions Least() and

Add() to delete and add a live node from or to the list of live nodes, respectively.

Least() finds a live node with least c(). This node is deleted from the list of live nodes
and returned.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 93

Add(x) adds the new live node x to the list of live nodes. The list of live nodes be
implemented as a min-heap.

Algorithm LCSearch outputs the path from the answer node it finds to the root node
t. This is easy to do if with each node x that becomes live, we associate a field parent
which gives the parent of node x. When the answer node g is found, the path from g
to t can be determined by following a sequence of parent values starting from the
current E-node (which is the parent of g) and ending at node t.

Listnode = record
{

Listnode * next, *parent; float cost;

}

Algorithm LCSearch(t)

{ //Search t for an answer node
if *t is an answer node then output *t and return;
E := t; //E-node.
initialize the list of live nodes to be empty;
repeat
{

for each child x of E do
{

if x is an answer node then output the path from x to t and return;
Add (x); //x is a new live node.
(x parent) := E; // pointer for path to root

}
if there are no more live nodes then
{

write (“No answer node”);
return;

}
E := Least();

} until (false);

}

The root node is the first, E-node. During the execution of LC search, this list
contains all live nodes except the E-node. Initially this list should be empty.
Examine all the children of the E-node, if one of the children is an answer node, then
the algorithm outputs the path from x to t and terminates. If the child of E is not an
answer node, then it becomes a live node. It is added to the list of live nodes and its
parent field set to E. When all the children of E have been generated, E becomes a
dead node. This happens only if none of E’s children is an answer node. Continue the
search further until no live nodes found. Otherwise, Least(), by definition, correctly
chooses the next E-node and the search continues from here.

LC search terminates only when either an answer node is found or the entire state
space tree has been generated and searched.

Bounding:

A branch and bound method searches a state space tree using any search
mechanism in which all the children of the E-node are generated before another node
becomes the E-node. We assume that each answer node x has a cost c(x) associated
with it and that a minimum-cost answer node is to be found. Three common search

strategies are FIFO, LIFO, and LC. The three search methods differ only in the
selection rule used to obtain the next E-node.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 94

A good bounding helps to prune efficiently the tree, leading to a faster exploration of
the solution space.

A cost function c(.) such that c(x) < c(x) is used to provide lower bounds on

solutions obtainable from any node x. If upper is an upper bound on the cost of a

minimum-cost solution, then all live nodes x with c(x) > c(x) > upper. The starting

value for upper can be obtained by some heuristic or can be set to .

As long as the initial value for upper is not less than the cost of a minimum-cost
answer node, the above rules to kill live nodes will not result in the killing of a live
node that can reach a minimum-cost answer node. Each time a new answer node is

found, the value of upper can be updated.

Branch-and-bound algorithms are used for optimization problems where, we deal
directly only with minimization problems. A maximization problem is easily converted
to a minimization problem by changing the sign of the objective function.

To formulate the search for an optimal solution for a least-cost answer node in a
state space tree, it is necessary to define the cost function c(.), such that c(x) is
minimum for all nodes representing an optimal solution. The easiest way to do this is
to use the objective function itself for c(.).

 For nodes representing feasible solutions, c(x) is the value of the objective

function for that feasible solution.

 For nodes representing infeasible solutions, c(x) = .

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost

node in the subtree with root x.

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will use an

estimate c(x) such that c(x) < c(x) for all x.

FIFO Branch and Bound:

A FIFO branch-and-bound algorithm for the job sequencing problem can begin with
upper = as an upper bound on the cost of a minimum-cost answer node.

Starting with node 1 as the E-node and using the variable tuple size formulation of
Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) = 19, u(3) = 14, u(4) =
18, and u(5) = 21.

The variable upper is updated to 14 when node 3 is generated. Since c (4) and

c(5) are greater than upper, nodes 4 and 5 get killed. Only nodes 2 and 3 remain

alive.

Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are generated.

Then u(6) = 9 and so upper is updated to 9. The cost

gets killed. Node 8 is infeasible and so it is killed.

c(7) = 10 > upper and node 7

Next, node 3 becomes the E-node. Nodes 9 and 10 are now generated. Then u(9) =

8 and so upper becomes 8. The cost c(10) = 11 > upper, and this nodeis killed.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 95

The next E-node is node 6. Both its children are infeasible. Node 9’s only child is also
infeasible. The minimum-cost answer node is node 9. It has a cost of 8.

When implementing a FIFO branch-and-bound algorithm, it is not economical to kill

live nodes with c(x) > upper each time upper is updated. This is so because live

nodes are in the queue in the order in which they were generated. Hence, nodes with

c(x) > upper are distributed in some random way in the queue. Instead, live nodes

with c(x) > upper can be killed when they are about to become E-nodes.

The FIFO-based branch-and-bound algorithm with an appropriate

called FIFOBB.

c(.) and u(.) is

LC Branch and Bound:

An LC Branch-and-Bound search of the tree of Figure 8.4 will begin with upper =

and node 1 as the first E-node.

When node 1 is expanded, nodes 2, 3, 4 and 5 are generated in that order.

As in the case of FIFOBB, upper is updated to 14 when node 3 is generated and

nodes 4 and 5 are killed as c(4) > upper and c(5) > upper.

Node 2 is the next E-node as c(2) = 0 and c(3) = 5. Nodes 6, 7 and 8 are generated

and upper is updated to 9 when node 6 is generated. So, node 7 is killed as c(7) = 10

> upper. Node 8 is infeasible and so killed. The only live nodes now are nodes 3 and
6.

Node 6 is the next E-node as c(6) = 0 < c(3) . Both its children are infeasible.

Node 3 becomes the next E-node. When node 9 is generated, upper is updated to 8

as u(9) = 8. So, node 10 with c(10) = 11 is killed on generation.

Node 9 becomes the next E-node. Its only child is infeasible. No live nodes remain.
The search terminates with node 9 representing the minimum-cost answernode.

2 3
The path = 1 3 9 = 5 + 3 = 8

Traveling Sale Person Problem:

By using dynamic programming algorithm we can solve the problem with time

complexity of O(n22n) for worst case. This can be solved by branch and bound
technique using efficient bounding function. The time complexity of traveling sale
person problem using LC branch and bound is O(n22n) which shows that there is no
change or reduction of complexity than previous method.

We start at a particular node and visit all nodes exactly once and come back to initial
node with minimum cost.

Let G = (V, E) is a connected graph. Let C(i, J) be the cost of edge <i, j>. cij = if
<i, j> E and let |V| = n, the number of vertices. Every tour starts at vertex 1 and

ends at the same vertex. So, the solution space is given by S = {1, , 1 | is a

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 96

permutation of (2, 3, . . . , n)} and |S| = (n – 1)!. The size of S can be reduced by
restricting S so that (1, i1, i2, in-1, 1) S iff <ij, ij+1> E, 0 < j < n - 1 and
i0 = in =1.

Procedure for solving traveling sale person problem:

1. Reduce the given cost matrix. A matrix is reduced if every row and column is
reduced. A row (column) is said to be reduced if it contain at least one zero
and all-remaining entries are non-negative. This can be done as follows:

a) Row reduction: Take the minimum element from first row, subtract it
from all elements of first row, next take minimum element from the

second row and subtract it from second row. Similarly apply the same
procedure for all rows.

b) Find the sum of elements, which were subtracted from rows.

c) Apply column reductions for the matrix obtained after row reduction.

Column reduction: Take the minimum element from first column,
subtract it from all elements of first column, next take minimum
element from the second column and subtract it from second column.
Similarly apply the same procedure for all columns.

d) Find the sum of elements, which were subtracted from columns.

e) Obtain the cumulative sum of row wise reduction and column wise

reduction.

Cumulative reduced sum = Row wise reduction sum + column wise
reduction sum.

Associate the cumulative reduced sum to the starting state as lower
bound and as upper bound.

2. Calculate the reduced cost matrix for every node R. Let A is the reduced cost

matrix for node R. Let S be a child of R such that the tree edge (R, S)
corresponds to including edge <i, j> in the tour. If S is not a leaf node, then
the reduced cost matrix for S may be obtained as follows:

a) Change all entries in row i and column j of A to .

b) Set A (j, 1) to .

c) Reduce all rows and columns in the resulting matrix except for rows

and column containing only . Let r is the total amount subtracted to

reduce the matrix.

c) Find cS cR A i, j r, where ‘r’ is the total amount

subtracted to reduce the matrix, cR indicates the lower bound of the

ith node in (i, j) path and cS is called the cost function.

3. Repeat step 2 until all nodes are visited.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 97

3

Example:

Find the LC branch and bound solution for the traveling sale person problem whose
cost matrix is as follows:

 20
 30 10 11

15 16 4 2

The cost matrix is
 3 5

19 6

16 4

 2 4

18

7 16

Step 1: Find the reduced cost matrix.

Apply row reduction method:

Deduct 10 (which is the minimum) from all values in the 1st row.
Deduct 2 (which is the minimum) from all values in the 2nd row.
Deduct 2 (which is the minimum) from all values in the 3rd row.
Deduct 3 (which is the minimum) from all values in the 4th row.
Deduct 4 (which is the minimum) from all values in the 5th row.

The resulting row wise reduced cost matrix

Row wise reduction sum = 10 + 2 + 2 + 3 + 4 = 21

1

0

0

Now apply column reduction for the above matrix:

Deduct 1 (which is the minimum) from all values in the 1st column.

Deduct 3 (which is the minimum) from all values in the 3rd column.

 10 17 0 1
12

 11 2

The resulting column wise reduced cost matrix (A) = 0 3 0

15 3 12

11 0 0 12

0

Column wise reduction sum = 1 + 0 + 3 + 0 + 0 = 4

Cumulative reduced sum = row wise reduction + column wise reduction sum.

= 21 + 4 = 25.

This is the cost of a root i.e., node 1, because this is the initially reduced costmatrix.

The lower bound for node is 25 and upper bound is .

0

2

0

 10 20 0
13
 14 2

 1 3 0

16 3 15

12 0 3 12

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 98

Starting from node 1, we can next visit 2, 3, 4 and 5 vertices. So, consider to explore
the paths (1, 2), (1, 3), (1, 4) and (1,5).

The tree organization up to this point is as follows:

Variable ‘i’ indicates the next node to visit.

Step 2:

Consider the path (1, 2):

Change all entries of row 1 and column 2 of A to and also set A(2, 1) to .

 11 2 0

 0

15

11

 0

 12

 0 12

2

0

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

 11 2 0

Then the resultant matrix is
 0

15

11

 0

 12

 0 12

2

0

Row reduction sum = 0 + 0 + 0 + 0 = 0
Column reduction sum = 0 + 0 + 0 + 0 = 0

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as cS cR A 1, 2 r

c S = 25 + 10 + 0 = 35

Consider the path (1, 3):

Change all entries of row 1 and column 3 of A to and also set A(3, 1) to .

U =

L = 25

i = 2 i = 4 i = 5
i = 3

2 3 4 5

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 99

12

2 0

 3 0 2

15 3 0

11 0 12

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

Then the resultant matrix is

4

0

2

0

Row reduction sum = 0

Column reduction sum = 11
Cumulative reduction (r) = 0 + 11 = 11

Therefore, as cS cR A 1, 3 r

c S = 25 + 17 + 11 = 53

Consider the path (1, 4):

Change all entries of row 1 and column 4 of A to and also set A(4, 1) to .

12

 11

 0
 0

11

3

3 12

0 0

2

0

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

12

 11 0

Then the resultant matrix is

Row reduction sum = 0
Column reduction sum = 0

 0

11

3

3 12

0 0

2

0

Cumulative reduction (r) = 0 + 0 = 0

1 2

3 0

3

0 0 12

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 100

Therefore, as cS cR A 1, 4 r

c S = 25 + 0 + 0 = 25

Consider the path (1, 5):

Change all entries of row 1 and column 5 of A to and also set A(5, 1) to .

 12

 11 2

 0 3

15 3

 0

 0

12

0 12

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

Then the resultant matrix is

Row reduction sum = 5
Column reduction sum = 0

10

 0 3

12 0

 0

9 0

 0

9

0 12

Cumulative reduction (r) = 5 + 0 = 0

Therefore, as cS cR A 1, 5 r

c S = 25 + 1 + 5 = 31

The tree organization up to this point is as follows:

35

The cost of the paths between (1, 2) = 35, (1, 3) = 53, (1, 4) = 25 and (1, 5) = 31.
The cost of the path between (1, 4) is minimum. Hence the matrix obtained for path
(1, 4) is considered as reduced cost matrix.

U =

L = 25

i = 2 i = 4 i = 5
i = 3

2 53 3 25 4 31 5

i = 2 i = 5
i = 3

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 101

12

 11 0
A = 0

3 2

 3 12 0

11 0 0

The new possible paths are (4, 2), (4, 3) and (4, 5).

Consider the path (4, 2):

Change all entries of row 4 and column 2 of A to and also set A(2, 1) to .

 11 0

 0

11

 2

0

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

 11 0

Then the resultant matrix is

Row reduction sum = 0
Column reduction sum = 0

 0

11

 2

0

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as cS cR A 4, 2 r

c S = 25 + 3 + 0 = 28

Consider the path (4, 3):

Change all entries of row 4 and column 3 of A to and also set A(3, 1) to .

12

 3

11 0

2

0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 102

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

 1 0

Then the resultant matrix is

Row reduction sum = 2
Column reduction sum = 11

 1 0

 0 0

Cumulative reduction (r) = 2 + 11 = 13

Therefore, as cS cR A 4, 3 r

c S = 25 + 12 + 13 = 50

Consider the path (4, 5):

Change all entries of row 4 and column 5 of A to and also set A(5, 1) to .

12

 0 3

 0

11

0

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

Then the resultant matrix is

 1 0

 0 3

Row reduction sum = 11
Column reduction sum = 0

 0 0

Cumulative reduction (r) = 11+0 = 11

Therefore, as cS cR A 4, 5 r

c S = 25 + 0 + 11 = 36

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 103

The tree organization up to this point is as follows:

35

The cost of the paths between (4, 2) = 28, (4, 3) = 50 and (4, 5) = 36. The cost of
the path between (4, 2) is minimum. Hence the matrix obtained for path (4, 2) is
considered as reduced cost matrix.

 11 0

A =

 0

11

 2

0

The new possible paths are (2, 3) and (2, 5).

Consider the path (2, 3):

Change all entries of row 2 and column 3 of A to and also set A(3, 1) to .

 2

11

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

U =

L = 25

i = 2 i = 4 i = 5
i = 3

2 53 3 25 4 31 5

i = 2 i = 5

i = 3

28 6 7 8
36

50
i = 3

i = 5

 10

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 104

Then the resultant matrix is

 0

Row reduction sum = 2
Column reduction sum = 11

0

Cumulative reduction (r) = 2 + 11 = 13

Therefore, as cS cR A 2, 3 r

c S = 28 + 11 + 13 = 52

Consider the path (2, 5):

Change all entries of row 2 and column 5 of A to and also set A(5, 1) to .

 0

 0

Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

Then the resultant matrix is

 0

Row reduction sum = 0

Column reduction sum = 0

 0

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as cS cR A 2, 5 r

c S = 28 + 0 + 0 = 28

The tree organization up to this point is as follows:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 105

35

The cost of the paths between (2, 3) = 52 and (2, 5) = 28. The cost of the path

between (2, 5) is minimum. Hence the matrix obtained for path (2, 5) is considered
as reduced cost matrix.

A = 0

 0

The new possible paths is (5, 3).

Consider the path (5, 3):

Change all entries of row 5 and column 3 of A to and also set A(3, 1) to .
Apply row and column reduction for the rows and columns whose rows and
columns are not completely .

Then the resultant matrix is

Row reduction sum = 0
Column reduction sum = 0

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as cS cR A 5, 3 r

c S = 28 + 0 + 0 = 28

The overall tree organization is as follows:

U =

L = 25

i = 2 i = 4 i = 5

i = 3

2 53 3 25 4 31 5

i = 2 i = 5
i = 3

28 6 7 8
36

50

i = 3
i = 5

52 9 10 28

i = 3

11

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 106

35

The path of traveling sale person problem is:

1 4 2 5 3 1

The minimum cost of the path is: 10 + 6 +2+ 7 + 3 = 28.

0/1 Knapsack Problem

Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and
(w1, w2, w3, w4) = (2, 4, 6, 9).

0/1 knapsack problem can be solved by using branch and bound technique. In this
problem we will calculate lower bound and upper bound for each node.

Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13. Place
next item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9. Place
next item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3. No
fractions are allowed in calculation of upper bound so w4 cannot be placed in
knapsack.

Profit = P1 + P2 + P3 = 10 + 10 + 12

So, Upper bound = 32

To calculate lower bound we can place w4 in knapsack since fractions are allowed in
calculation of lower bound.

Lower bound = 10 + 10 + 12 + (
3
X 18) = 32 + 6 = 38

9

U =

L = 25

i = 2 i = 4 i = 5

i = 3

2 53 3 25 4 31 5

i = 2 i = 5
i = 3

28 6 7 8
36

50

i = 3
i = 5

52 9 10 28

i = 3

11 28

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 107

x1 = 1

L = -38

x1 =

Knapsack problem is maximization problem but branch and bound technique is
applicable for only minimization problems. In order to convert maximization problem
into minimization problem we have to take negative sign for upper bound and lower
bound.

Therefore, Upper bound (U) = -32
Lower bound (L) = -38

We choose the path, which has minimum difference of upper bound and lower bound.
If the difference is equal then we choose the path by comparing upper bounds and
we discard node with maximum upper bound.

U = - 32

U = - 32

L = -38

0

U = - 22

L = -32

Now we will calculate upper bound and lower bound for nodes 2, 3.

For node 2, x1= 1, means we should place first item in the knapsack.

U = 10 + 10 + 12 = 32, make it as -32

3
L = 10 + 10 + 12 + x 18 = 32 + 6 = 38, make it as -38

9

For node 3, x1 = 0, means we should not place first item in the knapsack.

U = 10 + 12 = 22, make it as -22

5
L = 10 + 12 +

9
x 18 = 10 + 12 + 10 = 32, make it as -32

Next, we will calculate difference of upper bound and lower bound for nodes 2, 3

For node 2, U – L = -32 + 38 = 6
For node 3, U – L = -22 + 32 = 10

Choose node 2, since it has minimum difference value of 6.

U = - 32

U = - 32

1 L = -38

x1 = 1 x1 = 0

U = - 22

L = - 38
2 3

L = -32

x2 = 1 x2 = 0

U = - 32

L = - 38

4 5 U = - 22

L = -36

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 109

x1 = 1

L = -38

x1 =

U = - 32

L = -38

x2 = 1

x2 = 0

U = -32

L = -38
 5

L = -36

3 = 1 x3 = 0

 7
U = -38

L = -38

Now we will calculate lower bound and upper bound of node 4 and 5. Calculate
difference of lower and upper bound of nodes 4 and 5.

For node 4, U – L = -32 + 38 = 6
For node 5, U – L = -22 + 36 = 14

Choose node 4, since it has minimum difference value of 6.

 = - 32

0

U = - 22

L = -32

x

U = -32

L = -38

Now we will calculate lower bound and upper bound of node 8 and 9. Calculate

difference of lower and upper bound of nodes 8 and 9.

For node 6, U – L = -32 + 38 = 6
For node 7, U – L = -38 + 38 = 0

Choose node 7, since it is minimum difference value of 0.

0

U = - 22

L = -32

x

U = - 32

L = -38

Now we will calculate lower bound and upper bound of node 4 and 5. Calculate
difference of lower and upper bound of nodes 4 and 5.

For node 8, U – L = -38 + 38 = 0
For node 9, U – L = -20 + 20 = 0

x1 = 1

L = -38

x1 =

U = - 32

L = -38

x2 = 1 x2 = 0

U = - 32

L = -38
4

5

L = -36

3 = 1 x3 = 0

 7

L = -38

x4 = 1 x4 = 0

U = - 38

L = -38

9

L = -20

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 109

Here the difference is same, so compare upper bounds of nodes 8 and 9. Discard the
node, which has maximum upper bound. Choose node 8, discard node 9 since, it has
maximum upper bound.

Consider the path from 1 2 4 7 8

X1 = 1

X2 = 1

X3 = 0

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 110

X4 = 1

The solution for 0/1 Knapsack problem is (x1, x2, x3, x4) = (1, 1, 0, 1)

Maximum profit is:

Pi xi = 10 x 1 + 10 x 1 + 12 x 0 + 18 x 1

= 10 + 10 + 18 = 38.

Portion of state space tree using FIFO Branch and Bound for above problem:
As follows:

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 111

NP-Hard and NP-Complete problems

Deterministic and non-deterministic algorithms

Deterministic: The algorithm in which every operation is uniquely defined is called
deterministic algorithm.

Non-Deterministic: The algorithm in which the operations are not uniquely defined but

are limited to specific set of possibilities for every operation, such an algorithm is called

non-deterministic algorithm.

The non-deterministic algorithms use the following functions:

1. Choice: Arbitrarily chooses one of the element from given set.

2. Failure: Indicates an unsuccessful completion

3. Success: Indicates a successful completion

A non-deterministic algorithm terminates unsuccessfully if and only if there exists no

set of choices leading to a success signal. Whenever, there is a set of choices that leads to

a successful completion, then one such set of choices is selected and the algorithm

terminates successfully.

In case the successful completion is not possible, then the complexity is O(1). In case of

successful signal completion then the time required is the minimum number of steps

needed to reach a successful completion of O(n) where n is the number of inputs.

The problems that are solved in polynomial time are called tractable problems and the

problems that require super polynomial time are called non-tractable problems. All

deterministic polynomial time algorithms are tractable and the non-deterministic

polynomials are intractable.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 112

j

Satisfiability Problem:

The satisfiability is a boolean formula that can be constructed using the

following literals and operations.

1. A literal is either a variable or its negation of the variable.

2. The literals are connected with operators ˅, ˄͢, ⇒ , ⇔

3. Parenthesis

The satisfiability problem is to determine whether a Boolean formula is true

for some assignment of truth values to the variables. In general, formulas are

expressed in Conjunctive Normal Form (CNF).

A Boolean formula is in conjunctive normal form iff it is represented by
(xi ∨ xj ∨ xk

1) 𝖠 (xi ∨ x 1 ∨ xk)

A Boolean formula is in 3CNF if each clause has exactly 3 distinct literals.

Example:

The non-deterministic algorithm that terminates successfully iff a given

formula E(x1,x2,x3) is satisfiable.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 113

Reducability:

A problem Q1 can be reduced to Q2 if any instance of Q1 can be easily rephrased as an

instance of Q2. If the solution to the problem Q2 provides a solution to the problem Q1,

then these are said to be reducable problems.

Let L1 and L2 are the two problems. L1 is reduced to L2 iff there is a way to solve L1 by

a deterministic polynomial time algorithm using a deterministic algorithm that solves L2

in polynomial time and is denoted by L1α L2.

If we have a polynomial time algorithm for L2 then we can solve L1 in polynomial time.

Two problems L1 and L2 are said to be polynomially equivalent iff L1α L2 and L2 α L1.

Example: Let P1 be the problem of selection and P2 be the problem of sorting. Let the

input have n numbers. If the numbers are sorted in array A[] the ith smallest element of

the input can be obtained as A[i]. Thus P1 reduces to P2 in O(1) time.

Decision Problem:

Any problem for which the answer is either yes or no is called decision problem. The

algorithm for decision problem is called decision algorithm.

Example: Max clique problem, sum of subsets problem.

Optimization Problem: Any problem that involves the identification of an optimal value

(maximum or minimum) is called optimization problem.

Example: Knapsack problem, travelling salesperson problem.

In decision problem, the output statement is implicit and no explicit statements are
permitted.

The output from a decision problem is uniquely defined by the input parameters and

algorithm specification.

Many optimization problems can be reduced by decision problems with the property that

a decision problem can be solved in polynomial time iff the corresponding optimization

problem can be solved in polynomial time. If the decision problem cannot be solved in

polynomial time then the optimization problem cannot be solved in polynomial time.

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 114

Class P:

P: the class of decision problems that are solvable in O(p(n)) time, where p(n) is a

polynomial of problem’s input size n

Examples:

• searching

• element uniqueness

• graph connectivity

• graph acyclicity

• primality testing

Class NP

NP (nondeterministic polynomial): class of decision problems whose proposed

solutions can be verified in polynomial time = solvable by a nondeterministic

polynomial algorithm

A nondeterministic polynomial algorithm is an abstract two-stage procedure that:

• generates a random string purported to solve the problem

• checks whether this solution is correct in polynomial time

By definition, it solves the problem if it’s capable of generating and verifying a

solution on one of its tries

Example: CNF satisfiability

Problem: Is a boolean expression in its conjunctive normal form (CNF) satisfiable, i.e.,

are there values of its variables that makes it true? This problem is in NP.

Nondeterministic algorithm:

• Guess truth assignment

• Substitute the values into the CNF formula to see if it evaluates to true

What problems are in NP?

• Hamiltonian circuit existence

• Partition problem: Is it possible to partition a set of n integers into two

disjoint subsets with the same sum?

• Decision versions of TSP, knapsack problem, graph coloring, and many other

combinatorial optimization problems. (Few exceptions include: MST, shortest

paths)

• All the problems in P can also be solved in this manner (but no guessing is

necessary), so we have:

P NP

• Big question: P = NP ?

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 115

NP HARD AND NP COMPLETE

Polynomial Time algorithms

Problems whose solutions times are bounded by polynomials of small degree are called
polynomial time algorithms

Example: Linear search, quick sort, all pairs shortest path etc.

Non- Polynomial time algorithms

Problems whose solutions times are bounded by non-polynomials are called non-

polynomial time algorithms

Examples: Travelling salesman problem, 0/1 knapsack problem etc

It is impossible to develop the algorithms whose time complexity is polynomial for

non-polynomial time problems, because the computing times of non-polynomial are

greater than polynomial. A problem that can be solved in polynomial time in one model

can also be solved in polynomial time.

NP-Hard and NP-Complete Problem:

Let P denote the set of all decision problems solvable by deterministic algorithm in

polynomial time. NP denotes set of decision problems solvable by nondeterministic

algorithms in polynomial time. Since, deterministic algorithms are a special case of

nondeterministic algorithms, P ⊆ NP. The nondeterministic polynomial time problems

can be classified into two classes. They are

1. NP Hard and

2. NP Complete

NP-Hard: A problem L is NP-Hard iff satisfiability reduces to L i.e., any

nondeterministic polynomial time problem is satisfiable and reducable then the problem

is said to be NP-Hard.

Example: Halting Problem, Flow shop scheduling problem

NP-Complete: A problem L is NP-Complete iff L is NP-Hard and L belongs to NP

(nondeterministic polynomial).

A problem that is NP-Complete has the property that it can be solved in polynomial time

iff all other NP-Complete problems can also be solved in polynomial time. (NP=P)

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 116

If an NP-hard problem can be solved in polynomial time, then all NP- complete problems
can be solved in polynomial time. All NP-Complete problems are NP-hard, but some NP-

hard problems are not known to be NP- Complete.

Normally the decision problems are NP-complete but the optimization problems are NP-

Hard.

However if problem L1 is a decision problem and L2 is an optimization problem, then it is

possible that L1α L2.

Example: Knapsack decision problem can be reduced to knapsack
optimization problem.

There are some NP-hard problems that are not NP-Complete.

Relationship between P,NP,NP-hard, NP-Complete

Let P, NP, NP-hard, NP-Complete are the sets of all possible decision problems that are

solvable in polynomial time by using deterministic algorithms, non-deterministic

algorithms, NP-Hard and NP-complete respectively. Then the relationship between P,

NP, NP-hard, NP-Complete can be expressed using Venn diagram as:

Problem conversion

A decision problem D1 can be converted into a decision problem D2 if there is an

algorithm which takes as input an arbitrary instance I1 of D1 and delivers as output an

instance I2 of D2such that I2 is a positive instance of D2 if and only if I1 is a positive

instance of D1. If D1 can be converted into D2, and we have an algorithm which solves

D2, then we thereby have an algorithm which solves D1. To solve an instance I of D1,

we first use the conversion algorithm to generate an instance I0 of D2, and then use the

algorithm for solving D2 to determine whether or not I0 is a positive instance of D2. If it

is, then we know that I is a positive instance of D1, and if it is not, then we know that I is

a negative instance of D1. Either way, we have solved D1 for that instance. Moreover, in

this case, we can say that the computational complexity of D1 is at most the sum of the

computational complexities of D2 and the conversion algorithm. If the conversion

algorithm has polynomial complexity, we say that D1 is at most polynomially harder than

D2. It means that the amount of computational work we have to do to solve D1, over and

Design and Analysis of Algorithms AY: 2024-25

DEPT OF CSE 117

above whatever is required to solve D2, is polynomial in the size of the problem instance.
In such a case the conversion algorithm provides us with a feasible way of solving D1,

given that we know how to solve D2.

Given a problem X, prove it is in NP-Complete.

1. Prove X is in NP.

2. Select problem Y that is known to be in NP-Complete.

3. Define a polynomial time reduction from Y to X.

4. Prove that given an instance of Y, Y has a solution iff X has a solution.

Cook’s theorem:

Cook’s Theorem implies that any NP problem is at most polynomially harder than SAT.

This means that if we find a way of solving SAT in polynomial time, we will then be in a

position to solve any NP problem in polynomial time. This would have huge practical

repercussions, since many frequently encountered problems which are so far believed to be

intractable are NP. This special property of SAT is called NP-completeness. A decision

problem is NP-complete if it has the property that any NP problem can be converted into it

in polynomial time. SAT was the first NP-complete problem to be recognized as such (the

theory of NP-completeness having come into existence with the proof of Cook’s Theorem),

but it is by no means the only one. There are now literally thousands of problems, cropping

up in many different areas of computing, which have been proved to be NP- complete.

In order to prove that an NP problem is NP-complete, all that is needed is to show that SAT

can be converted into it in polynomial time. The reason for this is that the sequential

composition of two polynomial-time algorithms is itself a polynomial-time algorithm,

since the sum of two polynomials is itself a polynomial.

Suppose SAT can be converted to problem D in polynomial time. Now take any NP

problem D0. We know we can convert it into SAT in polynomial time, and we know we

can convert SAT into D in polynomial time. The result of these two conversions is a

polynomial-time conversion of D0 into D. since D0 was an arbitrary NP problem, it follows

that D is NP-complete

	DIGITAL NOTES
	DESIGN AND ANALYSIS OF ALGORITHMS
	(Autonomous Institution–UGC, Govt.of India)
	COURSE OBJECTIVES:
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	UNIT V
	TEXTBOOKS:
	REFERENCES:
	COURSE OUTCOMES:
	Algorithm:
	An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be performed with a finite amount of effort in a finite length of time. No matter what the input values may be, an algorithm terminates after executing a fini...
	 Output: at least one quantity is produced
	 Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will terminate after a finite number of steps;
	In formal computer science, one distinguishes between an algorithm, and a program. A program does not necessarily satisfy the fourth condition. One important example of such a program for a computer is its operating system, which never terminates (exc...

	Psuedo code for expressing algorithms:
	.
	. (1)
	While Loop:
	. (2)
	. (3)
	For Loop:
	. (4)
	. (5)
	repeat-until:
	. (6)
	Case statement:
	. (7)
	. (8)
	Algorithm:

	Performance Analysis:
	Time Complexity:
	The time needed by an algorithm expressed as a function of the size of a problem is called the time complexity of the algorithm. The time complexity of a program is the amount of computer time it needs to run to completion.
	When solving a problem we are faced with a choice among algorithms. The basis for this can be any one of the following:
	Measuring the running time of a program
	The running time of a program depends on factors such as:
	2. The quality of code generated by the compiler used to create the object program.
	4. The time complexity of the algorithm underlying theprogram.

	Space Complexity:
	The space complexity of a program is the amount of memory it needs to run tocompletion. The space need by a program has the following components: Instruction space: Instruction space is the space needed to store the compiled version of the program ins...
	 Space needed by constants and simple variables in program.
	Environment stack space: The environment stack is used to save informationneeded to resume execution of partially completed functions.
	 The compiler used to complete the program into machine code.
	 The target computer.
	Algorithm sum(a,n)
	s=0.0;
	}
	 The space needed by ‘a’a is the space needed by variables of tyepe array of floating point numbers.
	Complexity of Algorithms
	The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space requirement of the algorithm in terms of the size ‘n’ of the inputdata. Mostly, the storage space required by an algorithm is simply a multiple of ...
	1. Best Case : The minimum possible value of f(n) is called the best case.

	Asymptotic Notations:
	The following notations are commonly use notations in performance analysis and used to characterize the complexity of an algorithm:
	Big–OMEGA Ω (Lower Bound)
	Big–THETA Θ (Same order)
	Definition: A theoretical measure of the execution of an algorithm, usually the time or memory needed, given the problem size n, which is usually the number of items. Informally, saying some equation f(n) = o(g(n)) means f(n) becomes insignificant rel...
	Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data. Clearlythe complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n) we want to examine. This is usually done by comparing f(n) with some stand...

	Classification of Algorithms
	If ‘n’ is the number of data items to be processed or degree of polynomial or the size of the file to be sorted or searched or the number of nodes in a graph etc.
	Log n When the running time of a program is logarithmic, the program getsslightly slower as n grows. This running time commonly occurs in programs that solve a big problem by transforming it into a smaller problem, cutting the size by some constant f...
	small amount of processing is done on each input element. This is theoptimal situation for an algorithm that must process n inputs.
	n2 When the running time of an algorithm is quadratic, it is practical for use only on relatively small problems. Quadratic running times typically arise in algorithms that process all pairs of data items (perhaps in a double nested loop) whenever n d...

	Numerical Comparison of Different Algorithms
	The execution time for six of the typical functions is given below:

	Divide and Conquer
	General Method:
	Control Abstraction of Divide and Conquer

	Binary Search:
	Example for Binary Search
	Successful searches un-successful searches
	Analysis for worst case

	Merge Sort:
	Algorithm
	Example
	Tree Calls of MERGESORT(1, 8)
	Tree Calls of MERGE()
	Analysis of Merge Sort

	Quick Sort
	Example
	Analysis of Quick Sort:
	Worst Case Analysis
	Best and Average Case Analysis

	1. Disjoint Set union:
	2. Find(i):
	UNION operation:
	Example:
	Solution:
	Degenerate Tree:
	Example: (1)
	1
	5

	Weighting Rule for Union(i,j)
	:

	AND/OR GRAPH:
	Biconnected Components:
	L (w) ≥ DFN (u)
	Algorithm for finding the Biconnected Components:
	Example:
	Finding the Articulation Points:
	Example: (1)
	Finding the Articulation Points: (1)

	Greedy Method
	CONTROL ABSTRACTION
	Algorithm GreedyKnapsack (m, n)
	Running time:
	Example:
	Example: (1)
	Algorithm GreedyJob (d, J, n)
	Minimum Spanning Trees (MST):
	Here are some examples:
	Kruskal’s Algorithm
	Algorithm Kruskal (E, cost, n, t)
	Running time:
	Example 1:
	MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM
	Algorithm Prim (E, cost, n, t)
	The cost of Minimal spanning tree = 11.
	Algorithm:
	Running time: (1)

	Dynamic Programming
	All pairs shortest paths:
	Example 1:
	Example :
	Example 1: (1)
	Solution:
	Other Solution:
	Reliability Design:
	Example :
	Solution:

	Optimal Binary Search Tree:
	Matrix chain multiplication
	The problem
	Given a sequence of matrices A1, A2, A3, ..., An, find the best way (using the minimal number of multiplications) to compute their product.
	e.g. A1 (A2 (A3 ((An−1 An)))) yields the same matrix.
	– Multiplying p × q matrix A and q × r matrix B takes p q r multiplications; result is a
	– Consider multiplying 10 × 100 matrix A1 with 100 × 5 matrix A2 and 5 ×50 matrix A3.

	Notation
	• Let m(i, j) denote minimal number of multiplications needed to compute Ai Ai+1 Aj

	Recursive algorithm
	• Assume that someone tells us the position of the last product, say k. Then we have to compute recursively the best way to multiply the chain from i to k, and from k + 1 to j, and add the cost of the final product. This means that
	• If noone tells us k, then we have to try all possible values of k and pick the best solution.
	• To go from the recursive formulation above to a program is pretty straightforward:
	= 2
	• Exponential is ... SLOW!
	• Problem is that we compute the same result over and over again.

	Dynamic programming with a table and recursion
	• Solution is to “remember” the values we have already computed in a table. This is called memoization. We’ll have a table T[1..n][1..n] such that T[i][j] stores the solution to problem Matrix-CHAIN(i,j). Initially all entries will be set to ∞.
	• The table will prevent a subproblem MATRIX-CHAIN(i,j) to be computed more thanonce.
	– Θ(n2) different calls to matrix-chain(i, j).
	– When a call has been made once it costs O(1) time to make it again.

	BACKTRACKING
	General Method:
	Terminology:
	Example:
	Complexity Analysis:
	Sum of Subsets:
	Graph Coloring (for planar graphs):
	Example:

	Hamiltonian Cycles:

	Branch and Bound
	General method:
	Least Cost (LC) search:
	Control Abstraction for LC-Search:
	Bounding:
	FIFO Branch and Bound:
	LC Branch and Bound:
	Example:
	0/1 Knapsack Problem
	Deterministic and non-deterministic algorithms
	Reducability:
	Decision Problem:
	What problems are in NP?
	NP HARD AND NP COMPLETE
	Non- Polynomial time algorithms
	NP-Hard and NP-Complete Problem:
	Relationship between P,NP,NP-hard, NP-Complete
	Problem conversion

	Cook’s theorem:

